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ABSTRACT

Grain-size analyses of 411 bottom surface sediments from Delaware
Bay show a distinctive pattern of progressive sorting, with grain zize
decreasing in the upbay direction and toward shore. The texture pattern
is produced by tidal currents and is related to bathymetry. In general,
the sediments hecome coarser-grained as water depth increases. Coarse-
to-medium sands occur in the tidal channel bottoms, fine to very fine
sands make up the linear sand shoals adjacent to the channels, and muds
form the tidal marshes at the margins of the bay. Interlaminated muds
and fine sands characterize the shallow subtidal flats, except in near-
shore areas where waves and tidal currents have eroded the fine-grain
marsh or estuarine sediment, exposing the underlying coarse Pleistocene
sediments.

The relationships of transgressive Holocene estuarine deltaic
environments in the subsurface are complex because different parts
of the sedimentary record may be present or absent depending upon the
extent of erosion at the shoreline, deposition and sediment reworking
on the subtidal flats, and deposition of linear sand shoals assaciated
with tidal channel development. The subsurface environments represented
in piston cores can be related to bottom surface environments by texture
characteristics, sedimentary structures, and by an ideal vertical
sequence developed from Walther's Law for the Correlation of Facies.

As sea level rose during the early Holocene, the locus of fine—
grain estuarine deposition migrated upward and landward along the
transverse shelf valley (or estuary retreat path) from the Continental
Shelf to the present site of Delaware Bay. The ancestral Delaware
River channel and valley behind Capes May and Henlopen began to £ill
with fine-grain estuarine sediments derived from the Coastal Plain and
the Piedmont. With the continued rise of sea level, the active estuarine
depocenter migrated north out of the bay into the tidal river, and tidal
currents replaced river discharge as the dominant influence on estuarine
circulation in the bay. In response to changing dynamic and physical

conditions, Delaware Bay began Lo change from a constructive to a



destructive estuarine delta, characterized by low sediment input, high
tidal current energy, extensive sediment reworking, and the development
of flood tidal channels. Ag tidal influence increased at the bay mouth,
(1) bottom gsediments throughout the bay became increasingly subject to
reworking by tidal currents; (2) flood tidal currents eroding channels
headward into the muddy substrate of the lower bay removed mud in
suspension, left the coarser sands in the channel bottom as a lag deposit,
and deposited fine sands along the channel margins like levees as current
velocity and competence decreased at the channel margini and (3) coarse
sediments derived from the Continental Shelf were depeosited in the
southeastern part of the lower bay by the net landward transport of
bottem tidal currents.

The major sedimentary enviromnments of the tide-dominated transgressive
Delaware delta include: (1) the subaerial tidal marshes and washover
barrier beaches in the lower bay; (2) the fine-grained deposits of the
subtidal flats; (3) the linear sand shoals; and (4) the estuary mouth
shoal complex with mutually evasive tidal channels and flood tidal delta.
The Delaware Estuary, characterized by a low supply of coarse sediment,
rising relative sea level, and intensive sediment reworking by tidal

currents, ls a depositional model for the transgressive estuarine delta.
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INTRODUCTION

The Delaware River Estuary, like other estuaries of the Atlantic
Coastal Plain, follows a deeply incised river valley which was drowned
as the latest Wisconsin glaciers melted and sea level began to rise
across the Continental Shelf producing a marine transgression. Along
the coast of Delaware, the transgression has caused the lateral and
vertical migration of successive Holocene depositional environments
over a Pleistocene unconformity (Kraft, 197la), Similar changes
occurred offshore as the Delaware shelf valley was drowned, serving
as an estuary retreat path along which estuarine environments migrated
to their present position (Swift, 1973). The long-term paleogeographic
and morphelogic changes have continued in Delaware Bay as the drowned
estuary system is subjected to chanpging conditions of dynamic equilibrium
(Kraft and others, 1973b).

Recent studies have characterized different aspects of the Delaware
River Estuary so that in many ways, it is one of'the best described
coastal-plain-type estuaries. However, most of the detalled sediment
studies have been concerned with the area from the head of tide at
Trenton, New Jersey to the head of Delaware Bay {(U. S, Army Corps of
Engineers, 1973a, 1973b; Neiheisel, 1973); the suspended sediments and
nearshore environments of Delaware Bay (Oostdam, 1971; Kraft, 1971b;
Strom, 1972; Elliott, 1973; Meyerson, 1972); and the drowned river valley
of the Delaware (Swift, 1973; Belknap and others, 1976). There is no
detailed study of the character and distribution of bottom sediments in
Delaware Bay, nor is there a clear understanding of the relationship of
sedimentary processes in the bay to the Delaware River, the Atlantic
Coastal Plain or the Continental Shelf.

The purpose of this study is to present detailed sediment and facies
maps for the surface and subsurface of Delaware Bay. The study also
presents a conceptual model to describe the long-term changes in estuarine
sedimentation and morphology caused by the Holocene marine transgression,
the configuration of the transgressed Pleistocene surface, and changing

estuarine circulation patterns.
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THE STUDY AREA

The limits of the study area are the present shorelines of
Delaware Bay on the east and west, a line between Cape Hemlopen,
Delaware and Cape May Point, New Jersey on the south, and a line
from Bombay Hook and Arnold Point on the north (Figure 1). This
map of Pelaware Bay also shows the coded locations of prominent
geomorphic and geographic features referred to in this study. The
key for the coded place names is presented in Table 1.

To increase the convenience and precision of place name
references, new place names have been adopted and used in both
Table 1 and Figure 1. These new names permit reference to important
features which do not have formal names. All new place names in
Table 1 are identified with an asterisk and their areal extent is
shown in Filgure' 2.

In this study, the Delaware Estuary has been divided into three
segments: (1) the upper tidal river (the fresh water segment of
the Delaware between Trenton and the upstream limit of saline
intrusion); (2) the lower tidal river (the brackish water segment
between the upstream limit of salt intrusion and the Smyrna River; and
(3) Delaware Bay (the wider embayed segment of the estuary between the.
Smyrna River and the Capes. The exact location of the upstream limit
of saline intrusionvaries with fresh-water discharge and stage of tide,
but is normally found between Wilmington, Delaware and Philadelphia,
(Keighton, 1965).

PHYSICAL SETTING OF THE DELAWARE ESTUARY

Geology

The Delaware Estuary lies at the seaward end of the Delaware River,
which drains a 32,060-square-kilometer area of the northeastern United
States (Figure 3). The estuary extends 214 kilometers from the head of
tide at the Fall Line near Trenton, New Jersey to the Atlantic Ocean at
Cape May, New Jersey and Cape Henlopen, Delaware. Between Trenton and

New Castle, Delaware, the estuary parallels the Fall Line with early
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TABLE 1

Index to Place Names

10.

11.

12.

13.

14.

15.

16.

17.

18.

lgl

20,

21.

22.

23.

Cape Henlopen, Del. 24, Dunks Point
Lewes, Del, 25, Cohansey River
Roosevelt Inlet 26. Ben Davis Point
Broadkill River 27. HNantuxemnt Point
Broadkill Beach 28. TFortesque, N. J.
Primehook Beach 29, Egg TIsland Point
Fowler Beach 30, Maurice River
Slaughter Beach 31. Dennis Creek
Mispillion River 32, Vvillas, N. J.
Big Stone Beach 33, Cape May Canal
Murderkill River 34, Cape May Point
Bowers, Del. 35. Cape May, N. J.
St. Jones River 50, Hen and Chickens Shoal
Del. Ebb Tidal Delta
Kitts Hummock Ramp to the Sea*
Inlet Trough#*
Dover, Del.
51. Breakwater Harbor
Port Mahon - Lewes Channel¥®
Simons River 52, Harbor of Refuge
Leipsic River 53. The Shears
' Lower belaware Platform*
Bombay Hook Point 01d Bare Channel®*
Woodland Beach 54. 01d Bare Shoal
Hawknest Channel#*
Broadway Meadows
' 55. Hawknest Shoal
Smyrna River Ramp to the Bay*
Arnold Peint 56, Anchorage Area



57,
58.
59.
60.
61.

62.

63.

64.

65‘
66.
67.

68.

69.

13

TABLE 1 {cont.)

Brown Shoal

The Lower Middle Shoal
Blake Channel

Fourteen Foot Bank
Navigation Channel

Joe Flogger Shoal
Upper Delaware Plarform®

Bombay Hook Shoal

Arnold Point Shoal
Upper Jersey Platform*

Ship John Shoal
Cohansey Cove
Ben Davis Peoint Shoal

Nantuxent Cove
Cross Ledge Channel#

Cross Ledge Shoal
Lower Jersey Platform*

70.

72,

73.°

74.

75.

76.

77.

?8.

79.

Egg Island Flats

Brandywine Shoal
Brandywine Channel#®

N.J. Flood Tidal Delta*

Deadman Shoal

Fishing Creek Shoal

Bay Shore Channel

Crow Shoal

Cape May Channel

N.J. Ebb Tidal Delta*
Cape May Shoal Complex®
Baymouth Complex
Baymouth Channel*

Delaware Shelf Valley®
Inlet Trough#*
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Paleozoic metamorphic rocks of the Piedmont on the west and unconsolidated
coastal plain sediments on the east. South of New Castle, the lower tidal
river and Delaware Bay are underlain'by the sediments of the Atlantic _
Coastal Plain (Figure 4). 1In the vicinity of the bay, a veneer of fluvial
Pleistocene sands and gravels up to 33 meters thick covers the older
sediments of the Coastal Plain sediments (Jordan, 1964), These Pleilstocene
sediments form the Columbia Group in Delaware and the Cape May, Pennsauken,
and Bridgton Formations in New Jersey. In most cases, Pleistocene sediments
form the basal substrate upon which the sediments of the Holocene marine
transgression have been deposited (Richards, 1944; Kraft, 1971a). However,
subsurface data suggest that sediments of the Cohansey Formation and upper
Chesapeake Group (Miocene) may possibly outcrop in Delaware Bay (Sundstrom
and Pickett, 1968, 1969; Miller, 1971). In the following discussions,
sediments underlying Holocene estuarine deposits will be referred to as
pre-Holocene without further distinction of their age.

From the head of tide to the mouth of the bay, the total average
annual fresh water inflow to the estuary is approximately 572 cubic meters
per second. About B0 percent of this flow is derived from the Delaware
and Schuylkill Rivers and is discharged into the upper tidal river.

Extreme variations in fresh water discharge may cause wide excurslons of
isohaline positions in the estuary (Figure 5). Normally, the upstream
limit of saline intrusion is found between Wilmington, Delaware and
Philadelphia {Keighton, 1953).

Of the 1.27 x 10° metric tons of sediment supplied to the estuary
each year by rivers, the Delaware and Schuylkill Rivers supply 0.77 x 109
and 0.23 x 108 tons respectively. Other natural and anthropogenic related
sources contribute approximately 4.0 x 106 tons annually to the estuary
(U. S. Army Engineers, 1972). The bulk of the sediment deposition in the
estuary (3.4 x 100 metric tons per year) occurs in the dredged navigation
channel and anchorage areas between the head of Delaware Bay and Philadelphia
(Figure 19E). Organic-rich silty clays and clayey silts characterize
sediments deposited in this zone of rapid deposition, which is upstream
of the "null point" or "stagnation point" where "the tidal time average

velocity near the bottom changes from a landward to a geaward direction"
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(Harleman and Ippen, 1969, p. 10). There is virtually no sediment
deposition along the axis of the bay below the null point, and limited
shoaling (7 x 10° tons) in the 65 kilometers of dredged channel between
Philadelphia and Tremton. At the mouth of the bay, the net seaward
trangport of suspended sediment exceeds landward transport under most
conditions (Dostdam, 1971), Bottom sediments are transported landward
on the north side of the bay mouth and seaward on the south side
(Neiheisel, 1973). Quantitative data on the magnitude of landward and

seaward transport of bottom sediment is not available,

Sea Level Rise

The temporal and spatial character of the various sedimentary
environments of the Delaware coast and estuary are the result of the
rising sea level during the Holocene Epoch and the resulting marine
transgression. The rate at which Holocene sea level rose along the
Atlantic coastline of Delaware has been determined (Kraft, 1971a) from
numerous radiccarbon dates of basal marsh peats which are closely
related to the position of mean sea level (Figure 6). Refined analysis
of Kraft's relative sea level curve (Belknap and others, 1976) indicates
a rapid rate of sea level rise prior to 7,000 years before present (B.P.).
Between 7,000 and 5,000 years B.P., relative sea level rose at 0.3 meters/
century, slowed to 0.2 meters/century from 5,000 to 2,000 years B.P.,
and has risen at 0.12 meters/century during the past 2,000 years. Recent
data (Hicks, 1971; Balazs, 1974} indicate that relative sea level is

continuing to rise along the Atlantic coastline of Delaware.

Man's Activities

In its natural condition below Philadelphia, channel width of the
tidal river varied from 175 to 600 feet wide, and locally, numerous
shoals and sand bars limited the draft of sailing vessels to 17 feet
at low water. Larger ships sailing up to Philadelphia had to wait for
high tide to pass over the shoals, often requiring four days to make
the trip. The first navigation lmprovements to the estuary were

authorized by the Rivers and Harbors Act of 1885. This first project,
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and those which followed, provided for widening and deepening the
-channel to Philadelphia; construction of dikes, jetties, and lighthouses;
installation and maintenance of tide gauges; and establishment of the
Overfalls Lightship. The Harbor of Refuge breakwater and ice breakers
were built adjacent to Cape Henlopen to provide safe harbor for vessels
along this section of the Atlantic coast (Emersomn, 1950; U, S. Army
Engineers, 1938; Boggs, 1926).

Development of the Navigation Channel between Delaware Bay and
Philadelphia took place in four stages: (1) authorization of a 26-foot
channel in 1885; (2) a 30-fcot channel in 1889; (3) a 35-foot channel
in 1%10; and (4) a 40-foot channel to the Philadelphia Navy Yard in
1938, with a 37-foot channel up to the Philadelphia-Camden Bridge. In
1959, dredging began for én extension of the 40-foot channel upstream
to within six miles of Trenton, New Jersey.

Army Corps of Engineers records indicate that the Federal Government
dredged approximately 863 million cubic yards from the Delaware Estuary
between 1874 and 1968, In recent years, channel dredging in the 40-foot
channel amounts to seven to eight million cubic yards, five million of
which comes from the Marcus Hook area and one million from the Mifflin
range below the Schuylkill River (Hartzel, 1969).

One effect of channel dredging activities has been to alter
significantly the range of tides in the estuary above Delaware Bay
(Figure 17a). This increase in tidal range has been attributed to
decreased frictional dissipation of the tidal wave (Harleman, 1966;
Polis and Kupferman, 1973).

Channel dredging has also caused the upper limit of salt water
influence to migrate upstream. During the 18th century, sailing vessels
used the Delaware at New Castle below Wilmington as a source for potable
water (Tyler, 1955). Present chloride levels at New Castle are at
least 2600 ppm (Cohen, 1957, P- 34). No reliable records of pre-dredging
galinity measurements are available to support this inference. However,
recent model studies (FWPCA, 1966) on salinity distribution were conducted
to determine the effects expected from propeosed channel deepening and

wildening between Philadelphia and the sea., The proposed modifications
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were rejected because the chlorine concentrations at Philadelphia's
Torresdale Water Treatment facility Vould have increased from the
present 20 ppm (Cohen, 1957) to 50-85 ppm in the late fall with
assured flow rates at Trenton.

In 1829, a canal was constructed between Chesapeake and Delaware
Bays, reducing the sailing distance between Philadelphia and Baltimore
by 295 miles. The Chesapeake and Delaware Canal has since been enlarged
to a 35-foot-deep and 450-foot-wide sea level canal, Due to recent
widening, the short-term, mean net flow of fresh water from Chesapeake
Bay to Delaware Bay may, under extreme conditions, approach the flow
of the Delaware River at Tremton (Boyd and others, 1973). This fresh
water flow could cause a significant change in the salinity distribution,
stratification, and tidal elevation in the tidal river estuary and

Delaware Bay.

PHYSICAL DESCRIPTION OF DELAWARE BRAY

The bathymetric map (Figure 7) shows the fringing tidal marshes,
extensive subtidal flats near the shoreline, incised tidal channels, and
linear sand shoals which characterize the morphology and major sedimentary
environments of Delaware Bay. Each of these geomorphic features will be

described in this section.

The Salt Marshes and Shoreline

Approximately 830 square kilometers of tidal salt marshes along the
margins of Delaware Bay form the leading landward edge of the ongoing
Holocene marine transgression of the ancestral Delaware River Valley
(Kraft, 1971a, 1971b; Elliott, 1972; Meyersom, 1972). The relationship
between depth of burial and radiocarbon age of basal marsh peat deposits
indicates that the marsh surface has migrated upward and landward in
response to sediment deposition and rising sea level (Figure 8). Where
rivers, or the littoral drift system, or offshore Pleistocene subcrops
supply sands to the bay shoreline, the marshes are overlain by a series

of transgressive barrier beaches, Washover barriers characterize the
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lower 40 kilometers of the bay's western shoreline, but further north and
along the eastern shoreline of the bay, the washover barriers are rare and
discontinuous (Kraft 1971b, 1974). In those areas of the bay where there
is no source of sands, the bay-facing edge of the marsh is subject to
erosion by wave and block slumping. The shorelines of the bay are eroding
at an average tate of one meter a vear, except in the vicinity of dock

and pier facilities behind Cape Henlopen, and the groins and jetties between
Broadkill and Primehook beaches (Figure 9). Cape Henlopen, at the mouth

of the bay, is the only natural prograding secetion of the bay shoreline.

The Subtidal Flats

The nearshore areas of Delaware Bay are characterized by extensive
subtidal flats which are subject to erosion and sediment reworking by
waves and tidal currents. Subtidal flats in less than four meters of
water comprise 40 percent of the bay area (Figure 10), and extend as
far as 15 kilometers from the shore. Close to shore, the subtidal flat
may represent eroded tidal marsh muds which outcrop on the bay bottom
(Figure 11) or outcrops of Pleistocene sands and gravel from which the
overlying marsh sediments have been eroded (Figure 8). Further from shore,
interlaminated muddy sands and sandy muds occur on the flats (Jordan, 1968),
The low relief subtidal flats are commonly dissected by finger-like flood
tidal channels with linear sand shoals along the margins of the tidal

channels.

Channels

There are two distinct types of channels in Delaware Bay: the river
channel and finger-like flood tidal channels (Figure 12). The Delaware
River channel can be traced from the upper bay to the lower bay. Along
this stretch, the river or navigation channel is fairly straight and is
bounded by six linear sand shoals. Channel depths ranging from 12 to 17
meters are natural and no dredging is required to maintain the authorized
channel depth of 12 meters (Wicker, 1969). South of Brown Shoal, the
river channel is no longer confined by sand shoals and becomes indistinct,

with no clear expression in the bathymetric contours.
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Figure 10, Hypsographic curve of Delaware
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Figure 11. Oblique aerial photograph of an eroded
subtidal marsh subcrop near Kitts Hummock, Delaware.
A washover barrier beach and tidal marsh are visible
in the background (courtesy of Elizabeth Allen).
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Parallel to and west of the Navigation Channel are the Blake and
Baymouth Channels., Both these channels are open to the flood current,
shoal in the upbay direction, and have been compared to Van Veen's
"flood channel” by Oostdam (1971). These and ten smaller flood channels
are stralght and have a fan-like distribution radiating from the bay
mouth, trending north-south on the eastern side and north-northwest on
the western side of the bay. Depths within Blake Chanmnel are comparable
to those in the Navigation Channel. The deepest parts of the bhay occur

in the Baymouth Channel, with a maximum depth of 46 meters.

Linear Sand Shoals

Thirteen linear sand shoals adjacent to the tidal channels in Delaware
Bay were originally described as "tidal current ridges," shaped by and
oriented parallel to the tidal currents (Off, 1963), The linear shoals
are gsymmetric in cross section, with the long axis of each shoal aligned
parallel to the adjacent tidal channel (Figure 12), The heights of the
shoals range from 1,5 to 6 meters and their crests rise to within 0.6 to
1.8 meters of mean low water. Morphologically, these linear sand ridges
are very similar to those described on the western Atlantic Continental
Shelf (Duane and others, 1972), the North Sea (Caston, 1972; Houbolt,
1968) and other areas of the world,

Baymouth Complex

The mouth of the bay is 18 kilometers wide, and water depths range
from 1.6 to 50 meters, The Cape May Shoal Complex, a broad shallow sill
or estuary-mouth shoal (Swift, 1973), extending south from the shoreline
at Cape May to the Baymouth Channel, is characterized by a complex array
of linear to arcuate sand shoals separating mutually evasive pairs of tidal
channels. The channels are up to 10 meters deep and maximum current
velocities reach 1,7 meters/second. Seismic profiles across the shoals
show extensive fields of sand waves similar to those described by Ludwick
(1972) on a morphologically similar shoal complex at the mouth of Chesapeake
Bay.
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South of and adjoining the Cape May Shoal Complex is the Baymouth
Channel, consisting of three distinct depressions greater than 18 meters
in depth. The deepest depression-liés on a line between the Capes and
will be called the inlet trough. The two depressions upbay from the inlet
trough will be called the ramp to the bay, and the seaward extension of
the inlet trough depression the ramp to the sea. The axis-of the present
Delaware Shelf Valley is approximately parallel to that of the Baymouth
Channel, but is offset by 4.5 kilometers to the north. The Baymouth Channel
extends only 13 kileometers seaward from the inlet trough, while the Delaware
Shelf Valley continues almost 100 kilometers across the Continental Shelf
seaward from the base of the Cape May Shoal Complex,

Cape Henlopen, a recurved spit complex on the south side of the bay
mouth is the ogly natural prograding shoreline feature in the bay. The
long-term growth of the Cape 1g the result of accumulating littoral drift
sediments at the intersection of the bay and Atlantic shorelines. Sediments
eroded from and transported north along the Atlantic coast converge with
sediments derived from and moving southeastward along the bay shoreline
(Figure 13).

ESTUARINE CIRCULATION IN DELAWARE BAY

The energy for sediment erosion and transportation in Delaware Bay
is derived from the tide, wind, waves, and estuarine cireulation. Man's
activities have modified both the natural tidal effects and estuarine
circulation in the tidal river, but in the bay it is difficult to determine
the extent to which natural processes may have been affected or modified
by man's activities.

Because of its large size and variation in depth, Delaware Bay
exhibits both a moderately stratified, type B estuarine circulation
(Figure 14) and a vertically homogeneous, type C circulation pattern
(Pritchard, 1967; Pritchard and Carter, 1971). Waters in the deep channels
of the bay are moderately stratified (Cronin and others, 1962), while the

shallow areas of the bay are well mixed and vertically homogenecus
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(Oostdam, 1971). The general circulation pattern of the bay, while
subject to modification caused by changes in fresh water discharge

and meteorological effects, is characterized by a strong net landward

- movement of bottom waters and a net seaward flow at the surface (Figure
15). Measurements of tidal current, river discharge, and wave height
(Zeskind and LeLacheur, 1926: Oostdam, 1971; Maurer and Wang, 1973)
clearly indicate that the tide is the dominant driving force for the
currents and sediment trénsport in most of the bay.

Along its entire length, the width of the Delaware channel decreases
exponentially from the Atlantic to the head of tide (Figure 19a),
producing the classic funnel shape characteristic of river courses
with a moderate tidal range (Wright and others, 1973). The tidal
range increases up the estuary from 1.3 meters at the bay mouth to
2,0 meters at the head of tide (Figure 17a). In general, the currents
in the bay are linear reversing, flowing parallel to the axes of the
tidal channels (Figure 16), One exception occurs at the inlet trough
where there is a pronounced clockwise rotation of flow direction
throughout the tidal cyele. The Coriolis force modifies both the tidal
and nontidal flows in the bay. Flood currents are deflected toward the
New Jersey shoreline while ebb currents are deflected toward the Delaware
shore (Zeskind and LeLacheure, 1926). These deflections affect the
salinity distribution across the bay (Figure 5) and the distribution of
fine sediment in the upper bay (Biggs, 1972), and cause the tidal range
to be greater on the eastern side of the bay than on the western side
(Figure 17b). A westward flowing, net-nontidal flux of 6.8 cm./sec, has
been reported in the upper end of the Baymouth Channel {(Dennis Polis,

personal communication).

Relationshipyg of Estuarine Circulation and Sedimentation

The tide, as noted above,. is the principal driving force for currents
and sediment transport in the greatest part of the bay, Within the bay,
tidal currents are strongly influenced by the Coriolis force., The effects
of wave action are greatest near shore and on the tops of shoals. Analyses

of current measurements, suspended sediment data (Oostdam, 1971) and ERTS~1
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Figure 15. Dominant average tidal transport direction at the surface and
bottom of Delaware Bay (based on U. S. Coast and Geodetic Survey data in
Polis and Kupferman, 1973).
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satellite imagery (Klemas, 1973) have shown the direct relationship
between tidal stage, current veldcity, and the amount of sediment in
suspension. These data also show that the distributicn of suspended
sédiment concentrations is gemerally: (1) higher in the shallow
nearshore areas than in the deeper waters of the central bay (Figure
18); (2) higher during the floed than the ebb in the nearshore areas;
(3) higher during the ebb than the flood in the central bay; and (4)
higher near the surface than the bottom in the central channels of the
lower bay. ‘

To some degree, each of the physical processes described in this
section influences the behavior and distribution of sediments in the
Delaware Estuary. The present day relationships between the physical,
hydraulie, salinity, and mid-channel sediment deposition in the estuary
are summarized in Figure 19. These relationships can change on a short-
term daily basis, due to the effects of storms, floeds, droughts, and
the activities of man. Any of these changes can produce major changes
in the estuarine sedimentation pattern. Long~term changes in the
sedimentation pattern have resulted from changes in river discharge,
changes in the character and volume of sediment load, and the filling
and drowning of the Delaware River valley. The second half of this
study is an examination of the distribution and character of the sediments
in Delaware Bay, and how they and the physical parameters of the estuary

have changed during the past 12,000 years.

SURVEY AND ANALYSIS METHOUDS

For this study, grain-size data from 411 bottom samples and 413
samples from 50 piston cores, 1,600 line kilometers of high resoclution
seigmic reflection profiles, and 50 kilometers of side-scan sonar profiles
were analyzed to provide a detailed syanthesis of surface and subsurface
sediment distribution and structure in Delaware Bay. The locations of
all sediment samples, core sites, and geophysical profiles are plotted

on Figures 20 and 21 respectively.
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Figure 21. Location of 7 kHz seismic reflection profiles
in Delaware Bay.



41

Bottom samples were collected from the upper 5 to 10 centimeters
of the sediment between May 1971 and November 1972 with a modified
Foster-Anchor dredge (Kraft, 1971b). In addition, the results of size
analyses of 178 bottom samples provided by R. N. Strom and Don Maurer
have been incorporated into the study.

Each piston and vibratory core was described visually, photogfaphed,and
samples were taken for size analysis, The dredge and core sediment
samples were air-dried and split, and those with a high mud content were
wet-sieved. The sand-size fraction was sieved on a Ro~-Tap at one-half
phi intervals. The silt and clay-size fractions were analyzed by pipette.
The results of all size analyses, the computer-calculated graphic parameters
(Folk and Ward, 1967), and other pertinent information have been tabulated
by Weil (1976), Tabulations of these data for all surface samples are
presented in Appendix I. The mapped distributions of the sediment

characteristics are presented in the following section.

SURVEY RESULTS

Surface Sediment Characteristics

Textural Distribution

The mapped distribtuion of the median diameter of the sand and
gravel-size fraction (Figure 22) closely resembles the patterns of
the bathymetric map (Figure 7). Coarse-to-medium sands dominate the
mouth of the bay and extend upbay in narrow linear bands that coincide
with the axes of the major tidal channels. Generally, the coarsest
sands occur in the bottoms of the channels. Within any chanmnel, the
median grain diameter decreases in the upbay direction and away from
the center of the channel. Very fine sands characterize the linear
sand shoals, the channel margins, most of the lower Jersey Platform,
and all of the Delaware Platform except the area between Mispillion
River and Lewes Harbor. Major departures from the upbay and shoreward
fining pattern occur on the Upper Jersey Platform and the Cape May Shoal

Complex, where sediments become cearser in the shoreward direction,
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gravel-size fractions in Delaware Bay bottom sediments.
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The map pattern of the inclusive graphic standard deviatibn or
sorting (Figure 23) also shows a series of linear trends which closely
parallel the axes of the tidal chaunnels. Very well sorted sands
{0.504) are limited to the crests of the linear sand shoals, while well
sorted sands (0.35 - 0.504) are much more widespread, occurring on the
flanks of the tidal channels and subtidal flats of the middle bay. Bands
of moderately well sorted sands (0.5 - 0.7¢4) radiate upbay from the mouth
of the bay and occur as linear bands on the subtidal flats and in the
central areas of the upper bay. Poorly sorted sands (0.7 - 1.04) occur
in the lower bay channels, in the Navigation Channel in the central
bay, and on subtidal flats in the upper bay. Very poorly sorted sands
occur in the lower Baymouth Channel, Bayshore Channel, upper Navigation
Channel, and a nearshore zone of the Upper Jersey Platform.

The best sorted sediments are assoclated with the linear sand shoals
and the flanks of the tidal channels. Sorting becomes poorer toward
the bay shoreline and in the upbay direction. Sands in the Blake and
Navigation Chanmnels are better sorted than those in the Bayshore and
Baymouth Chamnels of the lower bay. ‘

Reflecting the general patterns of the median diameter and standard
deviation maps, Delaware Bay sands become more finely skewed in the upbay
direction and toward the shoreline (Figure 24}, Extensive areas of fine
and strongly fine skewed sands (1 - 0.1) cover most of the Upper Jersey
Platform, thin as a wedge from the midbay region toward the bay mouth,
and extend from the Delaware shoreline out to sea along the western edge
of the Baymouth Channel. A band of near symmetrical sands (0.1 to ~0.1)
along the eastern edge of the Baymouth Chammel bifurcates below Brandywine
Ehoal toward Egg Island Point and extends upbay in the Baymouth and Blake
Channels. Linear bands of coarse and very coarse skewed sands (-0.1 to
-1.0) occur on both sides of the Baymouth Channel near the Capes, extending
up the Bayshore and 0ld Bare Channels. The deeper waters behind Cape
Henlopen are characterized by strongly fine skewed sands.

The weight percent of mud (less than 62 microns) is greater thanm 10
percent in all nearshore areas of the bay except for portions of the Upper

Jersey Platform and the area between Broadkill Beach and the Mispillion
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River (Figure 25). Muddy sediments (greater than 10 percent mud) also
occur on the Lower Jersey Platform in a ''shadow zone" behind Cape May.
There 1s a similar shadow zone of high mud accumulation behind Cape
Henlopen. Muddy sediments extend upbay from the Mispillion River to
the center of the Navigation Channel opposite Bombay Hook.

Sediments iIn the central areas of the lower and middle bay are
characterized by less than 10 percent mud. "Toward the margins of the
bay, there is an offget en~echelon or interfingering pattern of the 10
percent mud contour, especially along the western shore. The higher
mud values occur at the heads of the tidal channels, with lower mud values
occurring adjacent to the channels on the linear sand shoals where
winnowing effects of waves and currents are greater.

Folk's (1968} sediment texture classification (Figure 26) was used
to grade all bottom sediment samples from the bay. The mapped distribution
of the texture classes (Figure 27) shows that sands dominate the central
areas of the bay from the mouth to the upper end of Joe Flogger Shoal.
Linear bands of gravelly sand with up to 29 percent gravel occur in the
lower bay chamnels and on the Upper Jersey Platform. A band of muddy
sands extends along the Delaware Platform north of 0ld Bare Shoal and on
large areas of the Lower Jersey Platform. Large areas of sandy mud occur
at the head of the Bayshore Channel and along the Delaware coastline
between the Murderkill and Smyrna Rivers. Patches of sandy mud also
occur in Lewes Harbor and at the upper ends of 0ld Bare and Blake Channels.
The distributidn of mud in Delaware Bay is limited to isolated patches,
most of which lie near the shore in water less than 4 meters deep. There
are, however, lsolated occurrences of mud in the lower Baymouth Channel
and in the upper Navigation Channel, which represent outcrops of older
deposits.

Recent studies (Folk-Ward, 1957; Visher, 1969, 1972, 1974; Klovan,
1966; Allem, 1971) have shown the relationships between energy of different
sedimentary environments, transport mechanism, and the textural attributes
of the sands. In thils study, a cluster analysis was run on all bottom
samples to group sediment samples with similar grain-size distributions.

The clustered textural groups were used to define sedimentary environments
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TABLE 2

Textural Characteristics of Facles Sediments

Facies Textural Characteristics
Facies A Fine-grain sands (3-4 phi)
{Cluster Groups) with variable mud (0-60%),

1 -13 very well sorted to poorly
sorted.

Facies B Muds (50-97%) with fine-grain

{(Cluster Groups) sands (3-4 phi), foorly

14 - 17 sorted to extremely poorly
sorted.

Facies C Medium-to~coarse sands (1-3 phi)

(Cluster Groups) with low mud content (0-35%),

18 - 34 moderately well sorted to very

peorly sorted.
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in Delaware Bay and were studied to determine the hydraulic processes
which characterize each environment. The purpose and procedures of
cluster analysis are described by Parks (1966} and Anderberg {1973).
Input for the cluster amalysis was the weight percent data for each
one-half phi sieve fraction from the grain-gize analyses. The silt

and clay-size fractions were not used in the analysis. The computer
program used for the analysis was written by Parks (1970) and the results
presented as a dendrogram (Weil, 1976). On the dendrogram, each sediment
sample is grouped with those samples with which its textural character-
istics are most similar (Figure 28). The characteristics of these
initial cluster groups (28a) are used to form new clusters which describe
the successively lower degrees of similarity between the groups as the
number of samples 1in each group increases {28b and ¢}. The resulting
clusters of samples may be studied at any convenient level of similarity.
In this study, three major cluster groups of the dendrogram have been
analvzed and will be referred to as facies, or as textural groups A, B,
and C. The textural characteristics of the sediments in each of the
three textural groups are summarized in Table 2.

The textural relationships within the three textural groups are
shown in Figure 29. Each cumulative curve represents the averaged
welght percent of each size class for all samples within each cluster
group, and closely approximates the textural characteristics of the
individual cumulative curves within the cluster group. The envelope of
textural variation within each textural group is also shown.

From the dendrogram, each sediment sample was characterized by its
textural group and the distribution of the groups mapped {(Figure 30).
This map can be interpreted as representing the combined information
content of several textural descriptor maps {(e.g., Figures 22-253) in
one single textural similarity descriptor on a single map.

The mouth of the bhay and the lower bay channels are characterized
by poorly sorted medium—to-coarse sands with a low mud content {Facies
C). Sediments of this type also occur near shore along the Upper Jersey
Platform. TFiner sands with a highly variable mud content (Facies A)

are found in most areas of the upper and middle bay and along the margins
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Figure 31. Location, orientation, and maximum height of sand waves
in Delaware Bay, based on seismic and side-scan sonar profiles.
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of the lower bay. Patches of very poorly sorted fine sands with a
very high mud content (Facies B} occur throughout the bay, but occur

most commonly along the Delaware shoreline of the middle and upper bay.

Bedforms

Low light television, seismic reflection and side-scan sonar
profiles in Delaware Bay show that asymmetric bedforms are commen
in the tidal channels and on the flanks of the linear sand shoals.
These bedforms include ripples, megaripples and sand waves with wave
lengths of less than 0.6 meters, 0.6 to 6 meters and greater than 6
meters respectively (Boothroyd, 1969). The amplitude of the ripples
was estimated to be 5 centimeters, while sand waves up to 5.5 meters
high were recorded on seismic profiles. The direction of bedform
transport was inferred to be toward the steeper slip face of the
asymmetric bedform. It is not possible to determine or assume the
true direction of bedform orientation from a single sounding profile;
therefore, the general direction (i.e., ebb or flood), not the true
strike direction, has been summarized with their location and height
(Figure 31). Almost without exception, the occurrence of sand waves
is associated with the coarser and more poorly sorted sediments of
cluster textural Facies C (Figure 30). The steeper slip face of the
asymmetric bedforms in the tidal channels was, in most cases, oriented
in the flood direction. Sets of sand waves with seaward orientations
were found in several locatioms and in the Baymouth Channel just seaward
of the study area (G. F. Jordan, 1962).

Visual inspection of the low light television monitor showed that
ripples commonly occur on the back of megaripples in the central areas
of the bay. Similarly, side scan sonar profiles show megaripples on
the back of gand waves in the Navigation Channel (Figure 32). Asymmertric
megaripples with amplitudes up to 1.3 meters occur on the flanks of the
linear sand shoals. In all cases, the slip face was oriented toward
the ridge crest (Figure 33) indicating sediment transport ocut of the
tidal channel toward shallower water, as previously reported by G. F.
Jordan (1962) and Moose (1972). The amplitude of the megaripples

decreased toward the shoal crest. Shallow water and safety considerations



Figure 32. Side scan sonar profile showing well-developed megaripples on and
at an angle to linear sand waves. The steep face of the megaripples is oriented

toward Brandywine Shoal on the western margin of the Navigation Chanmel. Note
course change.

l— (.5 km —»|

Figure 33. Sand waves migrating out of the Navigation
Channel between Bombay Hook Point and the Cohansey River,
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forced the cancellation of side scan profiles for the purpese of
determining possible changes in bedform orientation toward the crest
of the shoal (Caston, 1972), and the‘orientation of bedforms on the

opposite sides of the shoals (Smith, 1969),

Subsurface Data

Sediments

® Recognition Criteria Two approaches, vertical lithologic

sequences and physical characteristics of the sediments, have been
used as criteria to recognize and distinguish Holocene and pre-Holocene
sediments. In other coastal studies (Redfield, 1967; Newman and
Munsart, 1968; Jelgersma, 1961}, extensive use has been made of a
transgressive model which assumes that a marsh with a basal peat
unit overlying a sandy substrate was formed during the initial stage
of onlap at the site. The same model, used along the Delaware coast
by Kraft (1971a, 1973) and Elliott (1972) to interpret vertical
sediment sequences of transgressive barrier islands and marshes, was
employed in this study to recognize the base of the Holocene section
in Delaware Bay cores wherever the nature of the sediments permitted.

In the absence of a marsh and basal peat, other criteria were
used to recogniée the basal Holocene unconformity. These criteria are
more problematic since they do not provide a unique or definite solution
to the boundary recognition problem. Pleistocene sediments in Delaware
and New Jersey are commonly oxidized sands and gravels, in contrast to
the dark grey or grey-green estuarine sands and muds of Delaware Bay.
However, the problem is complicated because oxidized and reduced sediments
representing fluvial, estuarine, lagoonal, and near-neritic¢ environments
have been described in the Pleistocene record of Delaware (R. R. Jordan,
1962). Recognizing the probleiis and limitations of each, the following
criteria were used to recognize Holocene and Pleistocene sediments and
the boundary between them: (1) abrupt, non-systematic changes in
texture and/or mineralogy: {(2) color changes in the sediments from

orange, yellow, or white (Pleistocene) to dark grey or grey-green
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(Holocene); (3) highly compacted muds; (4) radiocarbon, paleontological,
or pollen data; and (5) tracing a known boundary contact from one area
to another by continuous seismie reflection profiles. Similar criteria
for Holocene-Pleistocene boundary recognition were used by Rehkemper

(1969) in Galveston Bay and by Kraft (1971a) along the Delaware coastline.

e Vertical Sediment Sequences From the 50 cores studied and

described in Appendix II, five vertical sediment texture sequences were
recognized and are described below.
I. A uniform fipne-grain mud throughout the core (Samples
1, 109, 261).
IT. A uniform coarse-to-medium sand throughout the core
(Samples 17, 173, 176, 262),
ITI. A sequence of alternating sandy mud and clean fine sand
(Samples 136, 133, 260, 317, 397, 83, 135, 151).
IV. A sequence of clean fine sands overlying muds, finer
muddy sands or sandy muds (Samples 31, 57, 73, 81, 119,
151, 149, 169, 167, 193, 231, 259, 278, 279, 317, 362,
372).
V. Muds, sandy muds or muddy sands overlylng coarser sands
which sometimes contained gravel and/or mud (Samples 30,
53, 55, 74, 170, 174, 322, 328).

In general, the estuarine sands above the Holocene/pre-Holocene
boundary tend to fine-grained (3-4 phi) and the percent mud decreases
upward in the core. The median diameter of sands in the cores remains
constant (cores 17, 132, 133, 173, 175, 262, 372), or fine upward (cores
136, 143, 174, 243, 247, 322, 328), except in cores near the mouth of the
bay or associated with the tidal channels (cores 37, 57, 149, 291, 317).

The estuarine sediments from cores in the middle bay are characterized
by alternating layers of mud and clean fine sand greater than one centi-
meter thick, Laminae less than one centimeter thick of sandy mud and
muddy sand are also common. The thickness of individual sedimenation
units often varies within a core from less than one millimeter to several
centimeters, These units may be continuous or discontinuous across the

core.
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Core sections of interlaminated muds and sands can be further
characterized as mud—doﬁinated or sand-dominated, based on textural
analyses and visual inspection of the comparative thickness and relative
frequency of the sand and mud layers. Flaser and lenticular bedding
occur in the sand-dominated and mud-dominated segments of the core,
respectively. Vertical sections dominated by sandy laminae overlie
gsections dominated by muddy laminae. Similarly, thinly-bedded fine
sediments are commonly found below coarser, apparently structureless,
sands with few primary structures.

Sediments below the Holocene/pre-Holocene contact tend to be white
or iron-stained mixtures of coarse sand and gravel which often contained
a high percentage of silt and clay-size material. At the contact, the
coarse basal sediments are overlain by a fine dark mud, grey-green sand,
or interlaminated mud and sand sequence. Six of the ten core sections
interpretred as representing pre-transgression sediments showed well-

developed, upward fining sequences.

® Primary Structures Primary structures, a ugseful means of

determining conditions at the time of deposition, are generally absent
or not apparent in the coarse subsurface sediments of the bay. Primary
structures are abundant and common in the finer-grained estuarine
sediments and closely resemble the finme rhythmically laminated sediments
described by Hantzschel (1939) and Reineck (1967a, 1967b, 1968). The
full range of tidal bedding features is present from simple flaser
bedding to lenticular bedding with flat lenses. The nature of the
bedding type and primary structure present depends on the water depth
and the kind of geomorphic feature from which the core was taken.
Lenticular bedding is best developed in lower energy enviromments,
such as the subtidal flats and in outcrops of subtidal flat deposits
which outcrop in the tidal channels. The prevalence of lenticular
bedding on the subtidal flats appears related to (1) the higher concen-
trations of suspended matter in the water column (Qostdam, 1971; Klemas,
1973, 1974) and (2) the greater potential for fine grain deposition
because of the lower current velocities and longer duration of slack

water period over the subtidal flats (Oostdam, 1971).
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Flaser bedding is associated with higher enerpgy environments
such as the linear sand shoals. The ineclined and truncated cross-
bedding and other bedding features in cores from the linear shoals
suggest extensive sediment reworking. Within a core, flaser-type

bedding generally overlies lenticular bedding.
Seismic Data

® Methods In order to determine the relations between morphology,
sediment distribution, and subsurface structure of the bay, more than
1600 kilometers of seismic reflection profiles were collected by Roger
Moose and the author under the direction of Professor Robert Sheridan
(Figure 21). Most of the seismic data was collected with a 7.0~kHz
Raytheon RTT-1100 Survey System. Seismic reflection profiles (3.5-kHz)
were also collected on R/V Eastward cruises and S50 kilometers of high
regolution Uniboom (250-1000 Hz) seismic reflection profiles and side-scan
sonar profiles were collected aboard the R/V Annandale with equipment
made available by Dr. Don Swift at NOAA-AOML in Miami,

The seismic data was examined to: (1) identify character and
distribution of subbottom structures; (2) recognlze and determine the
depth to the pre~transgression surface; and (3) determine the thickness
of the bay sediments above the pre-transgression surface. This informa-
tion was used to compile seismic cross sections, an isopach map of the
Holocene sediments, and a structural contour map on top of the pre-
transgression surface, Criteria used to recognize and trace internal
reflectors and the pre-transgression surface included: (1) correlation
of reflecting horizons with water jet borings (Biggs, 1972} and sediments
in piston cores; (2) tracing identified pre-transgression reflectors
along a seismic profile and intersecting profiles; (3) utilizing the
signature of identified pre-transgression reflectors from one area of
the bay in other areas when other means of correlation and identification
were not possible {(Moose, 1973). These procedures provided a substantial

measure of control for the mapping of subbottom characteristics.

# Subbottom Character and Structures One seismlc profile across

core site 247 (Figure 34) south of Egg Island Point, permits the correlation
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Figure 34. 7 kHz seismic profile across core size 247 on Lower Jersey
Platrform. The prominent ragged-appearing subbottom reflector is the S-1
reflector (Moose, 1973) and correlates with the pre-transgression surface
throughout Delaware Bay.
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Figure 35. Ragged seismic reflection signature from marsh muds and underlying
pre-Holocene sediments off Mispillion River.

Figure 36. Ragged seismic reflection signature from pre-Holocene sediments
off Ben Davis Point, N.J. This reflector appears to outcrop in the bottoms
of the topographic depressions.
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between subsurface litholeogy and the signature of seismic subbottom
reflectors. The weak horizontal reflector 1 to 2 meters below the
surface corresponds to a textural change in the core from muddy fine
sands of the subtidal flat to underlying marsh muds. The stronger,
ragged-appearing reflector 2 to 5 meters below the surface represents
the boundary between marsh muds and pebbly coarse sands. The ragged-
appearing reflector occurs commonly throughout the bay (Figures 35 and
36) and can be traced to the shoreline where it is exposed as the
subaerial Pleistocene surface. This subbottom seismic signature has
been interpreted and mapped ag the unconformable contact between Holocene
sediments and the underlying pre-transgression sediments.

Seismic subbottom profiles across the eastern flank of 0ld Bare
Shoal show Holocene sediments with well-developed internal bedding
inclined toward the east (Figure 37). Similar inclined bedding structures
were cbserved on the western slopes of the Baymouth Channel along profiles
off Broadkill Reach (Figure 38), north of the Shears, and the Delaware
Shelf Valley outside the bay (Figure 39). The inclined bedding on these
Holocene slopes resembles ''lateral” sediment accumulation described in
salt marsh channels (Van Straaten, 1954).

Profiles across the linear sand shoals indicate the shoals overlie
a flat horizontal subbottom reflector (Figures 40 and 41) similar to sand
banks of the North Sea (Houbolt, 1968) and the Atlantic inner Continental
Shelf (Duane and others, 1972). Examples of combined "lateral" and
"vertical" sediment accumulation observed on the flanks of the linear
sand shoals will be presented in a later discussion of the shoals.

Poor quality seismic reflections were associated with fine-grain
sediments in the upper bay. This was attributed to signal absorption
by gas bubbles formed by decaying organic matter in the sediments (Moose,
1973; Moody and Van Reenan, 1967).

Ancestral Drainage Patterns
Within the bay area, the ancestral river system is characterized by
a dendritic drainage pattern and an abrupt offset te the south of the

north-northwest trending channel in the mid-bay region (Figure 42).
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Figure 37. 7 kilchertz seismic reflection profile across the eastern flank
of 0ld Bare Shoal. Foreset bedding indicates that the shoal is building
toward the east. Note the course change and reversal of ship's track across
the shoal.
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Figure 38. 7 kilohertz seismic profile across the outer portiom of the Lower
Delaware Platform off Broadkill Beach. Foreset beds dipping eastward into the
Baymouth Channel suggest lateral eastward growth of the Platform.
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Figure 42. Depth to the pre-transgression surface in Delaware Bay based

on seismic reflection data shows the configuration of the ancestral
drainage system,
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Seaward of the channel offset, the width of the channel, defined by
the Z0-meter contour, increases from 2 to 5-8 kilometers. The deeply
incised tributaries of the Delaware have very narrow valleys which
wilden in the downstream direction. In the upper and middle bay, the
main buried channel of the ancestral Delaware is deeper than 20 meters
below present sea level. The presence of multiple buried channels in
the Jower bay suggests a braided or meandering stream system (Figure 43).
The maximum buried channel depth in the bay was 44 meters. Depths of
50 to 55 meters were reported for the buried Delaware channel on the
Continental Shelf (Sheridan and others, 1974). The depth and orientation
of a buried channel just east of Brandywine Shoal is the same as that
for the upper segment of the upper bay channel and the head of the Delaware
transverse shelf valley, but no evidence was found to indicate a continuity
between the channel segments. Similarly, no seismic evidence was found
for an ancestral Maurice River Channel, although topographic relief on
shore suggests that a deeply incised channel 1is present.

A low gradient (1:1,000) buried Pleistocene surface extends from
the leading edge of the tidal marshes on both sides of the bay, increasing
toward the buried river chamnel., South of Egg Island Point, the width
of the buried Pleistocene surface from the leading edge of the tidal
marsh to a depth of 12 meters ranges from 3 to 22 kilometers, and the

slope gradient is as low as 1:1800.

Holocene Sediment Thickness

The general pattern of Holocene sediment thickness in Delaware Bay
ig gimple (Figure 44). Sediments 0-3 meters thick chafacterize the axes
of the tidal channels, upper bay, and nearshore areas less than 4 meters
deep. Sediment deposits 3-6 meters thick occur at the heads and along
the margins of the lower bay tidal chanmnels. The linear sand shoals and
underlying sediments adjacent to the tidal channels represent the thickest
accumulations of Holocene sediments (6-13 meters) in the bay.

The thickness of sediments in channels tributary to the bay is not
shown because of inadequate data. Along the shoreline, drill-hole data

indicate the Holocene sediments in the incised valleys of the Murderkill,
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Figure 43. Seismic and side-scan sonar profiles of linear, flood-oriented
sand waves in Baymouth Channel, west of Brown Shoal. Note buried fluvial
channel in seismic profile.
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Mispillion, and Appoquinimink Rivers to be 27, 21, and 19 meters thick
respectively (John C. Kraft, personal communication).

The thickness of sediments at the tidal marsh shoreline is 3 to 5
meters greater than the sediment thickness immediately offshore (Richter,
1974). This is attributed to the difference between the height of the
marsh surface (0.6 to 1.3 meters above mean low water) and the offshore
bottom (0.6 to 3 meters below mean low water), and suggests that 0.6 to
1.0 x 10° cubic meters of fine-grain sediment may be eroded each year

along the 206 kilometers of bay shoreline.

Summary of Surface and Subsurface Data

Extensive tidal salt marshes and narrow washover barrier beaches
form the active depositional margin of Delaware Bay. These transgressive
sedimentary lithosomes have migrated landward and vertieally with time
in response to shoreline erosion and rising sea level, The shorelines
of the bay are characterized by active erosion and sediment reworking.
With the exception of the recurved spit at Cape Henlopen, there are no
prograding geomorphic features associated with the bay or its shoreline,

Grain-size analyses of 411 bottom surface sediments from the bay
show a distinctive textural distribution related to bathymetry, where
the sediments become finer-grained as depth decreases. Coarse-to-medium
sands occur in the tidal channel bottoms, fine-to-very-fine sands make
up the linear sand shoals adjacent to the channels, and muds form the
tidal marshes at the margins of the bay. Interlaminated muds and fine
sands make up the shallow subtidal flats, except in nearshore areas where
waves and tidal currents have eroded the fine-grain marsh or estuarine
sediment, exposing the underlying coarse Pleistocene sediments. Tidal
currents have produced a progressive sorting pattern in the bay, with
grain size decreasing in the upbay direction and toward shore.

Tidal currents are also responsible for (1) the extensive trains of
flood-oriented sand waves in the tidal channels; (2) the headward erosion
of flood tidal channels into the fine-grain estuarine sediments of the
bay; and (3) the "tidal current ridges" shaped by and parallel to the

tidal currents. The thickness of Holocene sediments in the bay is
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minimal in the axes of the tidal channels (0-3 meters) and greatest
(6~13 meters)} under the linear sand shoals adjacent to the tidal

channels,

INTERPRETATION

Surface Sediment Distribution

The distribution of surface sediments in Delaware Bay is characterized
by two basic patterns: (1) patches of coarse sediments along both shorelines
and on the Cape May Shoal Complex; and (2) progressive sorting, whereby
the sediments become progressively more poorly sorted, more positively
(fine) skewed, and finer-grained in the upbay direction and toward the
margins of the bay. The mechanisms responsible for both patterns will

be examined.

Nearshore Coarse Sediments

A review of.the historical maps of Delaware Bay provides a model
for the origin of the gravelly coarse sands near shore on the Jergey
Platform, which are oxidized, have a patchy distribution, and are
surrounded by or adjacent to soft muddy sediments. FEgg Island,
originally located south of the present Egg Island Point, measured
approximately 37 square kilometers on the Thomas Budd map of the bay
dated 1691. The area of the island had subsequently decreased to only
0.06 square kilometer by 1915 (U.S5.C.&G.S. chart 1218) and it appears
on later editions of the 1218 chart as two muddy subtidal shoals. Egg
Island was probably originally isolated from the extensive salt marsh
by tidal channels, much as Bombay Hook Island is today. The mud island
shereline was eroded at approximately 9 meters per year by tidal currents
and wave actlon until the island disappeared as a subaerial feature.
As waves and currents continue to erode the former island’'s muddy
substrate, the underlying Plelstocene sands and gravels are exposed
on the bottom, surrounded by marsh muds not yet eroded. This simple
marsh erosion model explains the close proximity of coarse and fine-

grain sediments on the Jersey Platform, and illustrates a fundamental
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process affecting the distribution of coarse sediments in the nearshore
areas of the bay.

The coarsest surface sediments in the bay occur on the south flank
of the unnamed channel south of 0ld Bare Shoal., White kaolin-rich
sandy gravels occurring in two narrow zones can be traced shoreward
~more than 15 kilometers from water depths of 0.6 to 3 meters (Strom,
1972). Strom found that similar sediments occur within 0.2 meters of
the bottom surface in three piston cores near the two linear zones,
and he interpreted them as an outcrop of pre-Holocene sediment beneath

the bay.

Cape May Shoal Complex

The Cape May Peninsula is a late Pleistocene ridge which is eroding
rapidly in response to wave attack and the Holocene marine transgression.
Paleogeographic reconstructions (Kraft, 197la) and southwest dipping
seismic subbottom reflectors (Moody and Van Reenan, 1967) suggest that
erosion of the Peninsula has persisted throughout much of the Holocene.
The older pre-transgression sediments are overlain by medium-to-coarse
sand, gravelly sands and patches of sandy gravel derived from the eroding
Peninsula and the southwesterly longshore drift system (Fairchild, 1966;
Neiheisel, 1973). Bathymetric changes of the shoals and channels indicate
extensive sediment reworking by breaking waves and swift tidal currents.
Several lines of evidence indicate that part of the medium and fine sand
fraction is winnowed from the shoal complex and tramsported into the
eastern part of the lower bay: these include fine sands in suspension
on and north of the shoal complex during maximum flood stage (Oostdam,
1971; Klemas, 1973), a pattern of net landward bottom transport (Figure
15), heavy mineral distribution (Neiheisel, 1973), and the flood
orientation of sand waves (Figure 31). The coarser sediment fractions,
derived from erosion and longshore transport, remain on the shoal complex

as a reworked lag deposit.

Progressive Sorting
The progressive sorting of bay sediments is attributed to the

combined effects of decreasing current velocity in the shoreward direction,
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Figure 45, Maximum surface tidal current veleocities within Delaware Bay
from tidal current chart for Delaware Bay and River (U.S. C. & G.S., 1960).
Velocities are given in knots. The six and thirty foot isobaths are shown.
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changes in water depth, estuarine circulation and effects of alternating
tidal currents on the transport of suspended sediment.

The constriction of the bay mouth by the capes and the Cape May
shoal complex results in a high velocity tidal jet which scours the
tidal trough and ramp to the bay. Within the bay, the network of
flood tidal channels serves as a tidal drain (Price, 1963) which
facilitates the movement of ebb and flood waters to and from the
tidal inlet. National Ocean Survey tidal current charts (1960) for
Delaware Bay show that the maximum tidal current velocity is lower
in shallow water than in the deeper tidal channels (Figure 45). As
the maximum current velocity decreases, the competence of tidal
currents also decreases, a pattern suggested in the sediment distribution
maps. The general relationship between decreasing water depth and
sediment fining in the (upbay and) shoreward direction appears related
to the decreasing competence of tidal curremts in shallow waters of
the bay.

Sediment deposition from suspemsion is controlled by the suspended
sediment concentration near the bed, the settling velocity, a limiting
shear stress above which no sediment is deposited, and the duration of
the period of subcritical stress (McCave, 1969).  In Delaware Bay,
the duration of the subcritical stress or slack water period increases
as the maximum current vejocity decreases (Qostdam, 1971). The proba-
bility of deposition of suspended sediment is therefore greatest outside
the tidal channels where the duration of the slack water period is
longer. With the increasing duration of the slack water period and
decreasing maximum current velocity toward the shore, there is the
potential to develop a distance-velocity asymmetry (Van Straaten and
Kuenen, 19537; Postma, 1967). Although current meter and suspended
sediment data cutside the tidal channels are not available, this
effect, together with settling and scour lag effects, is thought to
cause a net landward transport of sediment with each tidal cycle and
to promote the observed accumulation of interlaminated fine sands and
muds on the subtidal flats of the bay. These depositional processes

are apparently limited near the shoreline by the effects of shoaling
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waves and longshore currents which increase shear gtress conditions,
reduce the probability of deposition, and increase the chances for
arosion,

Isolated patches of fine-grain mud cccur on the flanks and at
the heads of all the major tidal chamnels, 1In a later section,
evidence will be presented that these muds are marsh or fine-grain

estuarine deposits which outecrep in the channel,

Mechanisms of Sediment Transport

Particles moving in a fluid may be transported as bed load or
traction {(particles supported by the bed and other particles moving
in the bed layer by rolling, sliding, and sometimes saltation) or as
suspended Ioad (particles moving above the bed layer whose weight is
continuously supported by the fluid), There is an active interchange
between the bed load and suspended load, as well as between the bed
load and the bed itself, The instaneous variations in local hydraulic
conditions determine when and if a particle of a given size will be
transported as bed load or suspended load.

These different sediment transport mechanisms may be represented
in the grain-size distribution of a sediment sample by one or mopre
elementary populations, each of which may represent a different
transportation mechanism and depositional history (Moss, 1962, 1972;
Spencer, 1963; Allen and others, 1972). In this study, each of the
clustered groups of sediment samples has been studied to relate the
transportation and deposition processes to the observed textural
characteristics of the group sediments. The method used was Passega's

CM method (Passega, 1957).

e CM Analysis A CM pattern was obtalned for 177 unimodal samples
in 15 cluster groups by plotting the median sample diameter (M) against
the first percentile {(C), an approximation of the maximum grain size
of the sample (Figure 46). The median grain diameter expresses the
average coarseness of the sediment distribution, while C is a measure
of the competence of the transpdrting current. Passega has used the
plot of these two parameters to relate sediment texture character with

different sedimentary environments (Figure 47).
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Approximately one-half the samples in cluster Facies A occur on
the linear sand shoals or on the flanks of the tidal channels (Figure
28b). On the CM diagram, these sediﬁents plot within and between the
fields produced by graded suspension (Type II)} and low velocity traction
currents (Type I). Passega (1957, p. 1973) indicates that well-sorted
Type II sediments may be formed when the velocity of tractive currents
decreases gradually and uniformly so that the near bottom suspension
remaing graded and adjusted to the velocity. The Type I pattern is
- produced when "very fine particles settle, mixed with intermediate
size particles which are placed in suspension in areas of maximum
velocity." Graded suspension conditions are expected on théllinear
shoals and tidal channel flanks as the velocity of tractive currents
increases and decreases through the tidal cycle.

Samples from cluster Facies B are scattered in and around CM
pattern III, indicating the prevalence of low velocity currents, "quiet
water deposition from suspension, and the occasional effects of currents
competent to transport fine sand" (Passega, 1957, p. 1973). The higher
current velocities are indicated by the variable amounts of sand in the
samples (1%-17%) which alsc accounts for the wide range of C values.
Samples from this facies ocecur in two distinct bay environments: the
protected harbor behind Cape Henlopen and the shallow waters of the
subtidal flats. The samples behind Cape Henlopen may represent open-
water deposition from suspension or, like the samples from the subtidal
flats, outcrops of marsh muds exposed by erosion.

Samples from Facies C are interpreted as traction sands, too coarse
to be transported in suspemnsion. These samples occur in the bottom of
tidal channels and near the margins of the bay. Selsmic data indicate
that the nearshore and some of the channel samples represent outcrops
or reworked pre-transgression sediments. The values of C and M therefore
depend upon bottom current velocity, the texture of the parent outcrop,
or both. This may account for the wide scatter of CM points from Facles
C samples.

FEach of the three textural facies in the Delaware Bay represents a
mappable sedimentary enviromment. The characteristics of each facies

group is summarized in Table 3. The nature of the sediments in each
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environment depends upon the competence of the tidal currents, the
duration of glack water, and the extent of wave activity. The medium-
to-coarse sands {0.5 to 2.5 phi) in Ehe tidal channels (Facies C)
represent a lag deposit from which the fine-size fractions have been
winnowed. The fine sands (3 to 4 phi) eroded from the tidal channels
are deposited along with muds on the flanks of the tidal channel, on
the linear sand ridges, and on the shallow faults adjacent to the
channel (Facies A). Most of the suspended silt and clay size material,
if not transported out of the bay, is deposited in the tidal marshes,
on the subtidal‘flats, in the protected waters behind Cape Henlopen,

or into the lower tidal river.

Character and Origin of the Linear Sand Shoals

Seven kilohertz seismic reflection profiles were collected across
many of the sand shoals in Delaware Bay. One profile across the
southern end of Joe Flogger Shoal (Figure 48) shows several features
which have been used to interpret the growth and development of this
and the other linear shoals in the bay (Figure 49).

The shoal is asymmetric in cross section with well-developed
internal cross bedding inclined toward the east, away from the steeper
face of the shoal. Bedding on the west side of the shoal is truncated
by a reflecting horizon which parallels the upper surface of the shoal.
The shoal is a depositional feature lying unconformably over a flat
pre-existing seismic basement reflector. There is no evidence that
the shoal 1s a relic feature or related to any pre-existing geomorphic
feature. The successive lateral shift of the internal ridge crest
positions indicate that the shoal is a laterally mobile bed form in
which two distinct stages of growth appear to be involved. The earliest
stage is characterized by combined lateral and vertical shifts in the
position of the ridge crest, followed by a later stage which is limit-
ed to vertical growth. Finally, the migration direction of the shoal,
as indicated by the shifting ridge crest and the truncated bedding, has
been toward the gentle slope of the shoal. This migration directionm

contrasts with data showing that "tidal current ridges" of the Atlantic
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Figﬁre 49, 7 kHz seismic reflection profile across
Joe Flogger Shoal.
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open Continental Shelf and the North Sea migrate toward their steeper
flank (Houbolt, 1968; Duane and others, 1972),

A series of piston cores along the seigmic profile revealed the
nature of the reflecting subbottom reflectors (Figure 50). Core 260
from the crest of the shoal penetrated 2 meters of highly stratified
fine sand and muddy sand with layers of mud. The horizontal and
inclined planar laminae, flager and wavy bedding, and truncated sets
of ripple marks indicate active sediment reworking by currents and/or
waves., Moose (1973) observed asymmetric megaripples on the flanks of _
the tidal channels and, in all cases, the stess side of the megaripple
faced toward the crest of the shoal (Figure 33) indicating sand transport
out of the channel onto the shoal. The tidal channels next to the shoals
are the source of these sands.,

Core 259 on the steep flank of the shoal penetrated 40 centimeters
of clean grey-green fine sand overlying a compact dark grey mud with
interbedded shell layers and occasional thin laminae of fine sand.

This mud unit represents the flat seismic reflector under the shoal
and closely resembles the interbedded muds and sands found on the sub-
tidal flats.

The seismic reflection profiles and piston cores from other areas
of the bay indicate that the flat muddy substrate under Joe Flogger
Shoal is an extensive surface throughout the bay, occurring beneath
Crow Shoal, Fourteen Foot Bank, Lower Middle Shoal, Cross Ledge Shoal,
Arnold Point Shoal and several smaller umnamed shoals on both sides of
the bay (Figures 40 and 41).

A comparison of Coast and Geodetic Survey maps of the bay between
1848 and 1915 confirms that Crow Shoal near Cape May has migrated at

least 0.5 kilometer westward, the direction of its gentle flank (Figure
51). The lateral migration of Crow Shoal also resulted in an extensive
widening of the Bayshore Channel east of the shoal and a seven-kilometer
displacement of the 18-foot isobath in the upbay direction. Long-term
changes of other linear shoals include longitudinal extension and the
erosion and filling of cross-shoal channels. Changes in the adjacent
tidal channels included increases in cross-sectional area, headward

erosion and deposition, and the tidal channels.
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The development and reworking of the tidal channels and linear
sand shoals is attributed to the increased water volume of the bay
and the resulting hydraulic changes that must have occurred as the
ancestral Delaware channel was drowned by rising sea level. As the
transgression progressed, these changes included increased tidal
influence and reduced river influence on estuarine circulation, the
upbay migration of the head of salt intrusion, increasing water depth
and an increase in the volume of water in the estuary, and the increasing
width of the shallow subtidal flats.

The low hydraulic efficiency of moving ever larger volumes of water
onto and off the muddy subtidal flats by sheet flow wasincreased by the
development of tidal chanmels. Channel flow reduced boundary friction
effects, increased tidal current velocities and increased the competence
of the tidal currents to erode and transport sediment. The observed
deepening, widening, and extension by erosion in the upbay direction of
the Bayshore Channel is a recent sample of this developmental process.

A model for the development and evolution of the linear sand shoals
in Delaware Bay can be developed from seilsmic profiles across the shoals,
bathymetric changes, and a small pair of unnamed shoals on the subtidal
flats off Kitts Hummock, Delaware (Figure 52). The two shoals are
recent features since neither is shown on the 1848 bathymetric chart
and only the eastern shoal appears on the 1915 edition of the 1218 chart
of the bay. Both shoals are shown on the 1937 edition of the chart.

The flood tidal channel has been eroded in an upbay direction into the
muddy subtidal flats., Sediment samples from piston cores and water jet
borings (Biggs, 1972) indicate that the shoals are composed of very fine
grey-green sand and overlie the buried subtidal flat and a tidal marsh
sequence with a basal peat. The basal peat occurs on both gideg of the
tidal channel and overlies a white pre-transgression sand. These geologic
relationships are shown on a tracing of a seismic reflection profile
across the paired shoals (Figure 53).

During the process of tidal channel development, subtidal flat muds
are eroded by the tidal currents and transported from the site in

suspension. Fine sands carried in suspension or as bed load are deposited
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along the channel banks as the competency of tidal currents decreases
from the channel margin outward (Figure 54)., The linear sand shoals
are thus formed by hydraulic processés overbank deposition, similar to
those by which alluviating streams and rivers build subaerial and
submerged natural levees (Russell, 1936; Morgan, 1970), and turbiditf
currents build natural submarine levees adjacent to submarine canyons
(Buffington, 1952; Heezen and Hollister, 1971). The effect of overbank
flow may be due to secondary currents or the lateral displacement of
flood waters out of the tidal chammnel due to the convergence of channel
banks in the upbay directiomn. _

A model for developing the two stages of growth -- the internal
bedding features and the direction of shoal migration observed in Delaware
Bay shoals —- can be summarized in terms of two basic processes: (1)
levee-like sediment deposition parallel to the banks of the tidal channels:
and (2) lateral changes in the position of channel banks by erosion. The
resulting shoal and channel development and structure is shown in Figure
55.

Tidal currents eroding headward into the shallow muddy subtidal
flats (Figure 55-1) cause deposition of subaqueous levees parallel and
adjacent to the;tidal channels (Figure 55-2). If channel development
occurs by bank erosion as in the case of Bay Shore Channel, the steep
flank of the shoal facing the channel and the crest would be undercut
and eroded (Figure 55-3). Cross-shoal sediment transport and deposition
would bury and preserve the remaining portion of the crest and the entire
gentle slope. If continued, thls pattern of erosion and burial (Figure
55~4) would explain all the features obsexrved in the seismic profile
across Joe Flogger Shoal. Once formed, the shoal could be a self- -
perpetuating feature as a site of continued deposition (Off, 1963),
subject to extensive reworking by tidal currents (Casten, 1972), or
could be completely removed by erosion., When the tidal channel erosion
at the site has stabilized, shoal development appears to be limited to
vertical growth, as in the second growth stage in the Joe Flogger Shoal
profile. Several processes acting singly or in combination could be

responsible for the vertical stage of shoal growth, including centinued
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Figure 55. Model for the formation of linear sand shoals in Delaware
Bay by headward erosion of tidal channels and overbank deposition of
fine sediments.
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overbank deposition, effects of storms and lengthwise extension of

the shoal.

Summary of the Shoal Develepment Sequence

The linear sand shoals of Delaware Bay are unigue in the sense
that they are formed as subaqueous levees by overbank deposition from
flood tidal currents. Once the shoal is formed, there does not appear
to be any regular ordered sequence of development comparable to the
s~nmence suggested by Caston (1972) for sand banks in the North Sea.
Local tidal currents and wave action can apparently alter the shape
of the shoal by deposition and erosion. The shoals themselves are
dynamic bedforms which are constantly adjusting to the local conditions
of dypamic equilibrium, which are themselves changing with the ongoing

rise of relative sea level.

A Model of Nearshore Sedimentation

In Delaware Bay, the first stage of development of the complex
relationships between surface facies and dynamic processes occurs at
the shoreline. Strom (1972) described the relationship in terms of a
dynamic balance between an inner and outer zone of construction which

' characterized by

are separated by an area called the "abrasion zone,'
high bottom turﬁulence, high energy expenditure and wave action (Figure
56). Shoreline and nearshore sediments eroded by wave actiom will

either be transported in a landward direction or seaward direction in
accordance with the "null point” hypothesis of Johmson and Eagleson
(1966).

The null pdint concept provides that the wave-produced hydrodynamic
forces on individual bed sediment particles will increase in the shoreward
direction. These forces, at some point, may cause sediment particles
of a given size to: (a) move in an offghore direction if gravity forces
acting on the pérticle excead the net fluid forces (over one wave cycle);
(b) move in an onshore direction 1if fluid forces exceed the gravity
forces; or (c) oscillate on the bottom with no net motion when the two

forces are equal {(the null condition}. TFor a given set of hydraulic
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conditions, the position of the null point, or null line (Swift, 1969),
depends upon grain size and lies closer to shore as grain size increases.
In Strom's model, the null point sepérates the abrasion zone from the
outer zone of construction. The point where particle motion first
begins is called the point or line of incipient sediment motion.

Strom (1972, p. 73) proposed that "when energy input is large
compared to the available sediment carpet in the region of shoaling
and breaking waves, the grains will be moved out of the abrasion zone,
exposing the underlying material to erogion.'' The eroded sediments
may be transported landward into the "inmer zone of construction,”
consisting of the tidal marsh and washover barrier complex., If the
sediment is transported offshore asbed load, it may be transported as
far as the null point for established sediment motion, which may lie
offshore of the point of incipient motion. If the eroded sediments
are transported offshore in suspension, the grains may be carried by
currents beyond the null point for established sediment motion and
deposited in the "outer zone of construction" which "includes all the
area of the bay in which sediments are presently accumulating" (Strom,
1973, p. 75).

The extent to which erosion in the abrasion zone occurs will
determine what ﬁroportion of the transgressive facies in the inner
zone of construction is preserved and buried. There may be a total
retention, partial retentieon or total loss of the transgressive
sequence (Figure 57), depending upon the thickness of the transgressive
sediments, the local rate of relative sea level rise, the sediment supply
and the availability of surf and current energy. Different degrees of
sediment retention have been suggested to explain the close proximity
of dark organic-rich muds and coarse oxidized sands in the nearshore
atreas of the hay.

Strom (1972, p. 75) suggested that an outer. zone of destruction
was required to represent completely the dynamics of the transgressive
sequence in Delaware Bay. This fourth zone includes the tidal channel
currents eroding previously deposited sediments and is illustrated in

Figure 56. It is obvious however, that each of the tidal channels
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constitutes a potential zone of destruction, and the adjacent linear
sand shoals zones of construction. Thissystemof tidal channels and
linear shoals constitutes the outer éone of reworking. The extensive
sediment reworking in the central areas of the bay further compliéates

the bay stratigraphy.

The Relationships Between Surface and Subsurface Sediments

Introduction

In the preceeding sections, it was shown that the bottom sediments
of Delaware Bay generally become finer-grained, more poorly sorted,
and increasingly negatively skewed in shallow waters where current
velocities are lower and the slack water period is of longer duration.
These relationships represent the present "direction" of reworking and
adjustment of surface sediments caused by changing conditions of dynamic
equilibrium, as sea level has rigen during the Holocene. On the
Delaware coast, the long-term response of the various sedimentary
environments to rising sea level has been a combined vertieal and
lateral migration in the landward direction (Kraft, 1971a, 1972b; Strom,
1972; Elliott, 1972},

In this section, these relationships, together with eriteria to
recognize surface textural facies and Walther's Law, have been used

to interpret subsurface data in terms of surface textures and facies.

Walther's Law
Johannes Walther, in his Law of the Correlation of the Succession
of Facies, gsummarized a fundamental relationship between recent surface
sedimentary environments and buried vertical sequences. Walther's Law
was, according to Middleton (1973, p. 979) originally stated as follows:

The various deposits of the same facles areas and
similarly the sum of the rocks of different faciles
areas are formed beside each other in space, though
in cross-section we see them lying on top of each
other. As with biotopes, it ig a basic statement
of far-reaching significance that only those facies
and facies areas can be superimpesed primarily
which can be observed beside each other at the
present tima.
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Furthermore,

the various facles .., are characterized not only
by depositional processes but also by erosional
processes (Middleton, 1973, p. 893).

The mid-bay area off Kitts Hummock, Delaware (Figure 52) shows a
typical sequence of the sedimentary environments encountered in Delaware
Bay, moving from the land in the offshore direction. This sequence,
summarized in Table 4, will be used with Walther's Law and the surface
sediment distribution to develop an ideal vertical sequence for the

transgressive sediments of Delaware Bay, a sequence that will be used

TABLE 4

A Typical Sequence of Sedimentary Environments in Delaware Bay

Subaerial Subtidal
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as a standard against which the vertical sediment sequences observed 1n
" the Plston cores can be compared and interpreted.

In the ldeal vertical sediment sequence (Figure 58), the lowermost
units are the subaerial facles, consisting of the Pleistocene surface,

the tidal marsh, and the washover barrier complex. In a core, the lowest
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GENERAL PATTERN OF UPWARD COARSENING

SUBTIDAL ENV.

P

SUBAERIAL ENV,

Figure 58. A conceptual model of an
© ideal wvertical sequence of transgressive

sedimentary sediments in Delaware Bay.
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of the three units is the Pleistocene surface, generally an oxidized
sand or graﬁelly sand., This coarse '"basement" unit is unconformably
overlain by a basal peat and the muds of the tidal marsh which typically
contains peat layers, organic fragments, burrows, and possibly deposits
of shallow lagoons and tidal creeks (Elliott, 1972). The marsh muds

may be unconformably overlain by a coarse sandy sequence with lag
deposits of shell fragments and gravel, representing the estuarine
washover barrier complex at the shoreline (Kraft, 1971b).

An erosional unconformity separates the sediments of the marsh/
washover barrier complex from the sediments of the offshore subtidal
envirbnments. Outcrops of eroded marsh mud may extend several kilometers
from the shoreline (Figure 11) before being buried by the very fine sands
and muds of the subtidal flats. These interlaminated deposits are
derived by gravity settling from the turbid plumes of suspended sediment
seen on ERTS-1 satellite imagery {(Klemas and others, 1973a, 1973b). In
the subtidal flat sediments, the percentage of mud generally decreases
with increasing distance from shore as water depth and current velocity
increage. Further from shore, the cross-bedded fine sands of the tidal
current ridges unconformably overlie the sand-dominated muds of the
outer subtidal flat.

The uppermost unift in the ideal vertical section consists of the
coarse sands derived from the Continental Shelf by the net landward
transport of bottom currents. These marine sediments are found in the
Baymouth Shoal Complex and in the eastern part of the lower bay (Neiheisel,
1973).

The ideal vertical transgressive sequence represents a composite
of the different relationships between depositional environments of
Delaware Bay. None of the cores collected during this study showed
the complete vertical sequence. Core 247 (vibrocore 24) represents
the most complete vertical depositional séquence examined in this study,
missing onl? the fine sands of a linear shoal and coarse marine sands.

A complete vertical sequence may possibly exist in the eastern part of

the lower bay.
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Recognition of Facies in Piston Cores

The criteria used to recognize ;he surface facies groups in the
subsurface cores are based on Figure 59. When the average values
for the weight percent mud and median diameter of all samples in each
cluster group are plotted, there is a distinct separation of the
cluster groups into the three facies groups plus a "transition" group.
The transition group, comprised of cluster groups 5, 6, 12, 13, and
17, showed a strong geomorphic association with the upper ends of the
tidal channels. This group appears to represent a mixing of mud and
sands deposited from suspension or derived from chamnnel-bottom deposits
or outcrops.

Based on the partitioning of the three facies (Figure 59), the
median diameter and the weight percent mud have been used to recognize
the facies association of samples in the piston cores which were
analyzed. Justification for this procedure is based on the relationship
of the partitioned groups to the average grain-size distribution for
the bay (Figure 60). Histograms of the averaged grain-size distribution
for the bottom and subbottom sediments in Delaware Bay both show
distinetly bimodal distributions. The primary mode in both curves lies
between 3.0 and 3.5 phi, with a well-developed secondary mode between
1.5 and 2.0 phi; The midpoint between the two modes corresponds to
the partitioning "fence'" between Facies A and C in Figure 59.

The average weight percent of grades coarser than (.5 phi is higher
in the subsufface than in the surface sediments while the opposite holds
for grades finer than 0.5 phi. However, the weight percent of mud ig
9 percent higher in subsurface samples which have not been subjected to
winnowing of the fines. Winnowing of the surface sediments could
ﬁartly account for the minor differences between the average surface
and subsurface sediment distributions. The strong basic similarity
of the two distributions occurs because subsurface sediments are the
primary source for most of the surface sediments in the bay. The bulk
of the surface gediments are simply former subsurface sediments which

have been reworked or exposed as subcrops during the marine transgressiocn.
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Figure 60. Histograms comparing the average
grain-size distribution of surface and subsurface
sediments from Delaware Bay.
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Each subgurface sediment sample from each core in Appendix II was
coded and assigned to one of the three cluster groups, based on the
median diameter and weight percent-mﬁd. The magnitude of each
component is indicated at the sample depth according to the following
scheme:

(a) the median diameter of the sample is indicated by a letter

prefix; C indicates a median diameter coarser tham 2.5 phi
(177 microns) and F indicates a median diameter finer than
than 2.5 phi.

(b) the percentage of mud in the sample is indicated as a

numerical suffix to the median diameter code.

This classification scheme was used to interpret the depositional

environments and determine the vertical succession pattern in each core.

Interpretation of Vertical Sequences in the Subsurface

The textures and vertical succession of the ideal vertical sediment
sequence have been used to interpret the depositional and erosional
history of the vertical sequences observed in the cores from Delaware
Bay (Appendix II). The basis for this interpretation assumes that the
idealized vertical sediment sequence is correct, and that the textures
and vertical successions of the ideal vertical sequence constitute
definitive criteria by which to interpret similar textures and successions
in cores from the bay. The interpretation makes no allowance for possible
short-term regressions during the Holocene history of Delaware Bay
(Meyerson, 1972}, the Hudson River (Weiss, 1974) and the Gulf Coast
(Morgan, 1970; Frazier, 1974). Such effects, if present, were not
recognized in the seismic or the piston core data from Delaware Bay.

The interpretation of the subsurface data is based upon the five
textural groups which make up the ideal vertical sequence and the
vertical successlon of these groups suggested by the surface sediment
distribution maps and Walther's Law. The environmental interpretations
of each of the textural groups in the vertical sequence of the bay I1s
sumpmarized in Table 5,

The textural relationships and vertical sequences in subsurface

cores from Delaware Bay, though extremely varied and complex, show a
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remarkable similarity to the ideal vertical sequence. The cores show
different combinations of the ideal vertical sequence depending upon:
(1) where the core was taken; (2) the length of the core compared to
the thickness of the sequences present; and (3) the erosional and
depositional history at the core gite.

Several commonly observed variations in vertical sequences are
summarized in a conceptual cross section (Figure 61), showing the
relationship between water depth, vertical lithologic variation,
subsurfacé facies and geomorphology. Cores showing each of ﬁhe

vertical sequences depicted are also listed.

A Model for the Evolution of Delaware Bay

Introduction

Estuarine conditions bezan in Delaware Bay when the landward-
migrating upstream limit of salt intrusion passed between the Capes,
approximately 12,000 years ago. After this time, the evolution of
Delaware Bay can be considered from three separate vet related
viewpoints:

(1) The genetic classification of the sediments in Delaware Bay;

(2) The development of transgressive estuarine environments; and

(3) The development of the present day morphology and subsurface

lithologic sequences.
In this section, each of these aspects of the evolution of Delaware

Bay will be examined.

The Estuarine Delta _

Throughout the geologic literature, many definitions of a delta
have been proposed, argued, revised, adopted, and discarded —- largely
because, as noted by Guilcher (1963), "the concept of a delta i{s complex"
and "caution is necessary in definition." Recent studies of ancient and
modern deltas (Shirley, 1966; Morgan, 1970), while providing a broader
understanding of the different types of deltas and the processes which
form and shape them, have made clear the lack of a flexible definition.
The following re-definition of a delta, proposed by Moore and Asquith
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(1971, p. 2566), has been adopted for this study because of its gimplicity
and flexibility: ''The subaerial and submerged contiguous sediment mass
deposited in a body of water (ocean or lake) primarily by the action of
a river."

The nature of the body of water into which a delta builds may be
used as a basis for delta classification (Bernard, 1965). One such
delta type is the estuarine dalta, about which, compared to other types
of deltas, relatively little is known (LeBlanc, 1972).; The estuarine
delta represents the subaerial and submerged contiguous sediment mass
depesited din an estuary, between a river and the sea where estuarine
circulation patterns controlling water and sediment movement are affected
primarily by the channel configuration and interaction of river discharge,
the tide and/br the wind (Figure 62). The relationships between estuarine

circulation and sedimentation patterns have been summarized in Table 6.

INCREASING EFFECT OF PARAMETER

|

B ¢

=]

ESTUARY TYPE

Figure 62. Relationships between estuarine
circulation pattern and controlling physical
factors (after Kimsman, 1963).
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TABLE &

Sumary of Estusrine Clrculation Characteristics nnd Sedimentatlon Pattemns

Type A
12QILY STRATIFIET)

Type B . Type C
PARTIALLY MIND VERTICALLY BCMOCTHDOUS

Type D
INTERALLY DOMOGENEOUS

River dominated
circulation systom

Tidal influawe of River influence on
river daminated tide douinated
circulation systom circulation system

Tide dominated
circulation Eystem

Flew .
Characteristics

Mat dowmstream flow
on surface ~ net
upstream flow neuax
bottom

Net dowmstroam £low Upstream on right

on surface - net side of flood direct-
upstream flow near don -~ downstream on
bottoam right side of cbb

Slow net ceaward
flow at all depths

Relative volumz of
ebb and flood
£low

Flow volune up the
gstwary during

Flood less than 10X

freshwater flow

Flow volue W the Flow volue up the
estuary during estuary during flood
flood greater than grealer than 10X
10X freshwater flow freshwater flow

Not known

Nature of salt waber
= fresh water
boundary

Bottam salt wedge

thinning vpstream

Intcnse misting No vertical salinity
across fresh water/ gradient - lateral
salt water inter- gradicnt due to
face coriolis force

Laterally and verti-
cally honogenecus
with lomgitudinal
salinity gradient

Mixing Pattern

galt water mixes

Extensive vertical &
laterat mixing

Salt water mixes
wpwaxd & fresh
water downward

Upstreanm diffusion

Controls on
upstream limit of
salt

Felated directly
to river discharge

River discharge River di.scha.rge over
dominates over "long"” tomm and tidal
Tidal effects cycle over "short”

tgzm

Deminated by tidal
excursion

locus of rapid
shoaling

In the vicinity of
the salt wedge tip

tributaries

Between ebb & flood Near upper limit of
limite of salt in  salt intrusion - on
intrusion ~ the right side of channel
*turpidity maximan” going upstream - in
- at the mouths of channel section with:
eXcossive cross-
sectional arena

Channel, section
with excessive
cross-sectional

Examples

Misaissippi
River

Chesapeake Bay, Thamz=s Fsluary
James River, Raritan Bay,
Savannah River, Gironde Estuary,
Charleston tlarbor, Delaware Bay

Miramichi River,
Ielaware Bay,
Giremde Estuary

Merrimac Estuary,
Piscataqua Estuary

Summarized from Schubed (1971) and Schubel and Pritchard (1972)
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Schubel‘(l97l, p. III-4) states that '"the estuarine delta grows
progressively seaward in the estuary extending the realm of the river,
and thereby progressively displacing the intruding sea ocut of the semi-
enclosed basin." Schubel further states that the nature of sediment
transport and deposition in the estuarine delta depends upon several
factors, including climate, the rate of sediment influx, the stability
of relative sea level, and estuarine clrculation -- especially the
relative influence of the tide and river discharge.

Schubel"s statement about the progressive seaward growth is valid
for the case‘of the prograding estuarine delta, such as those of the
Gulf Coast and southeastern Atlantic coast, wilth a high sediment influx
rate. The séatement does not hold for the estuarine delta in which the
rate of sediment influx to the estuary is low, relative sea level is
rising, and the influence of the tide is greater than that of the river.
Under these gonditions, the locus of active estuarine sediment deposition
would migratq landward up the drowned river valley as the progressive
influence of the sea advanced iInto the semi-enclosed coastal basin. (In
some cases, there may not be an adequate sediment supply to build the
irregular prograding shoreline normally associated with a "true" delta.)
This is the gsituation with the "submerged delta of the Delaware," a term
used by Mitchell (1886, p. 267) to describe Delaware Bay., The sediments
of the Chesaﬁeake Bay and Hudson River can also be viewed in the context
of a submergéd estuarine delta.

Several‘stratigraphic classification systems for deltas which depend
on an understanding of primary depositional processes responsible for
genetic facies are based on the observation that the ratio of sediment
supply to available marine energy affects the gross facies composition
of a delta system (Wright and Coleman, 1973; Scott and Fisher, 1969).
The delta classification of Scott and Fisher (1969, p. 29) emphasizes
"such features as kind and abundance of specific process-linked facies,
sand body geometry and trend, and facies distribution both in tracts and

vertical sequence," as described below:
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High Constructive Deltas: with a preponderance of fluvially

influenced facies
Lobate type: Jlobate delta front sand geometry
Elongate type: elongate or bar—fihger sand geometry

High Destructive Deltas: with a preponderance of marine facies

Wave-dominated: cuspate, strike oriented sand trend

Tide-dominated: commonly digitate or elongate tidal sand bodies

Tide-dominated marine processes are the primary mechanism affecting
the morphology and internal stratigraphy of the estuarine delta (Galloway,
1975). |

Today, the active fluvially-influenced facies in the Delaware estuary
are associated with the tidal river between the Smyrna River and head
of tide (Figure 19e). However, the long-term rate of sediment accumulation
in the tidal river has been tooc low, relative to the rise of sea level,
to cause progradation of the Delaware estuarine delta. The location of
the fluvially-infiuenced depocenter has migrated from a position of the
Continental Shelf during the low stand of sea level, through Delaware
Bay to its present position in response to the ongoing Holocene trans-
gression (Swift, 1973; Kraft and others, 1973b), and more recently,
the activities of man. The important point is that the active center
of the fluvial deposition in the Delaware Estuary is no longer in
Delaware Bay, but In the tidal river,

In the context of the ongoing Holocene marine transgression, Delaware
Bay represents the high destructive, tide-dominated portion of the Delaware
estuarine delta. The low sediment supply to the bay and the high tidal
energy flux have produced a submerged delta mass subject to extensive
tidal channel erosion and sediment reworking.

Tide-dominated, destructive delta systems with higher sediment influx
rates than that of the Delaware have been described by Scott and Fisher
(1969, p. 14):

In high destructive deltas, sediment input is moderate
te marine reservoir energy, and accordingly, the bulk
of these systems are built up of fluvially introduced
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sediment contemporaneously reworked by marine
ptocesses. Specific kind of marine processes,
whether malinly waves or tides, determines

main types....In tide-dominated, high destructive
deltas, fluvially introduced sediments are
reworked by tidal currents into a series of
digitate sand uniis radiating from the front

of the river mouth. Muds and fine-grained
sediments accumulate inland, forming extensive
mangrove swamps o1 tidal flats that prograde
the tidal sand bars. Modern examples of these
deltas are the Irrawaddy, Mekong, Frazier, Gulf
of Papua deltas, and several other eastern
Agiatic coastal deltas.

There are, however, several important differences between the
Delaware and those deltas described above by Scott and Fisher., The
differenceslinclude:

(1) The transgressive tidal marsh and washover barrier complex

f¢rm the only subaerial portion of the Delaware delta.

(2) Tﬁere are no prograding shorelines or depositional facies
associated with the Delaware Estuary,

(3) The bulk of the sediment mass comprising the Delaware
delta is submerged,

(4) Tﬁe Pleistocene headland restrictions at the mouth of
Delaware Bay have led to the development of flood tidal
cﬁannels and digitate sand bodies which radiate from
the bay entrance rather tham from the river mouth.

These characteristics of the Delaware Estuary can be regarded as a first
step in the synthesis of a depositional model for the transgressive

estuarine delta.

Development of Transgressive Estuarine Environments

At the end of the last Wisconsin glacial advance, the presence of
glaciers within the Delaware River drainage basin and the increased rates
of melting must have greatly increased the volumes of meltwater and the
competence of the Delaware River, During the low stand of sea level,
estuarine conditions in the Delaware River must have existed witﬁin the
Delaware Shelf Valley seaward of the present bay mouth on the Continental
Shelf, whilé freshwater conditions probably existed In ﬁhe present area

of Delaware Bay.
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During the Holocene, in response to rising relative sea level and
a reduction of periglacial meltwater discharge, the locus of constructive,
estuarine-delta deposition began to ﬁigrate landward up the Delaware
Shelf Valley. This transgressive depositional stage was presumably
followed by the development and subsequent landward migration of
destructive deltaic sedimentation patterns as the influence of trans-
gressive marine facies increased. These two contemporaneous yet separate
and distinct estuarine delta facies have migrated up the ancestral Delaware
Valley to their present positions (Figure 63). Swift (1973) referred to
this migration track as an estuary retreat path. It is not now possible
to pinpoint when the upstream limit of ocean-derived salt first passed
between Capes May and Henlopen into Delaware Bay. The existence of tidal
conditions in the Hudson River 12,000 years B.P., and salinity levels high
enough to support foraminifers about 11,500 years B.P. at the Narrows of
New York Bay (Weiss, 1974) provides a possible time framework for similar
conditions in Delaware Bay.

The course of the developing transgressive estuarine conditions in
Delaware Bay can be traced by analogy with present conditions in the
estuary above the bay. This approach was used by Kraft and others (1973b)
to study the evolution of middle~late Holocene morphology of theé Delaware
estuary, In this sequence, Pleistocene and Holocene fluvial deposits are
first buried by fine-grain transgressive estuarine sediments. The estuarine
deposits are subsequently eroded and reworked by tidal currents, then
buried by marine sediments derived from the Continental Shelf.

The tidal Delaware River above Philadelphia is a modern analogue of
conditions that existed in Delaware Bay 12,000 years B.P. Sediment
transport is dominated by the river flow and the net sediment transport
is seaward. Clastic deposition generally predominates and, except for
deposition in fringing tidal marshes, most fine~grain sediments are
deposited below Philadelphia., Between the head of salt and the null
point, fine-grain estuarine sediments are deposited over the underlying
fluvial sands and gravels. This estuarine depocenter, supplied from
both landward and seaward directions, has migrated landward in response
to changing hydraulic conditions and the ongoing marine transgression

{Figure 64).
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Figure 65, 3.5 kHz seigmic¢ reflection profile shows
outcrops of pre-Holocene sediments overlain by a thin
veneer of more recent sediments. Center of the photo-
graph is at 38-50.3°N. latitude and 75-04.0°W. longitude.
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Below the null point, the influence of landward transport of
bottom sediments increases toward the mouth of the bay. In the
Delaware today, the upper limit of landward transported ocean-derived
micrefauna is the head of the bay, and heavy mineral suites characteristic
of the Continental Shelf occur in the eastern part of the lower bay
(Neiheisel, 1973). These transgressive shelf sediments overlie the
estuarine muds and coarser fluvial deposits. Today, all three 1lithosomes
are pregent in the subsurface of Delaware Bay.

The effects of tidal currents have become increasingly important in
modifying the estuarine environments of Delaware Bay as sea level has
risen during the Holocene. Today, in the upper and middle bay, tidal
currents are reworking the fine—grain estuarine sediments. In the
lower bay, where the effects of tidal currents are most intense, tidal
currents have modified the estuarine sediments in several distinct ways:

(1) The silt and clay-size materials have been winnowed from the
surface sediments, except in nearshore and protected areas.

(2) Flood tidal currents have eroded the Holocene estuarine
sediments to expose the underlying pre—transgression sediments
(Figures 65 and 66) such as in cores 130, 74, and 226.

(3) Flood tidal currents have transported sediments derived
from the Continental Shelf into the eastern part of the lower bay
(Figure 67). These marine sediments form a flood tidal delta and
overlie the fine-grain estuarine sediments deposited during the earlier
stages of bay development (cores 55, 57, and 73).

(4) Reworked fine sediments have been transported seaward along
the ebb-dominated currents on the western side of the bay. Oostdam
(1971) reported a net seaward transport of suspended sediment at the
bay mouth, and the heavy mineral assemblages on the Continental
Shelf outside the south of the bay mouth indicate that they were
derived from the bay (Figure 67). Seilsmic reflection profiles in
the western part of the lower bay show well~developed, eastward-
dipping internal bedding on the flanks of the tidal channels (Figures
37, 38, and 39). These inclined heds are not related to similar

structures on the linear sand shoals, but represent the accumulation
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assemblages (from Neiheisel, 1973).
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of fine sands transported seaward along the western side of the bay
by Coriolis-influenced ebb tidal currents. The magnitude of this
net non-tidal westward transport is 6.2 cm/sec. (Dennis Polis,
personal communication). These sediments are either derived from
the tidal river or from the reworked bed of the bay. Consequently,
the marine-derived flood tidal delta is not present on the western
slde of the lower bay. Marine sands derived from the Continental
Shelf and transported northward by littoral drift occur on Cape

K. lopen.

The Development of Delaware Bay Morphology

The development of the present-day morphology of Delaware Bay
has resulted from the modification of the pre-Holocene terrain and
transgressive Holocene depositional environments by changing dynamic
conditions. The present relationships of the bay morphology, bathymetry,
and subsurface environments are interpreted in a series of cross sections
(Figure 68) baséd upon seismic data and subsurface lithology. The
early stages of bay development, previously discussed in this section,
are depicted in Figure 69 and shown by geomorphic comparison with
cross sections of the present-day Delaware estuary (Figure 70).

Evidence from Chesapeake Bay and the Hudson River estuary suggests
that the first effects of the Holocene rise of sea level in Delaware
Bay was the increasing influence of the tide at the bay mouth, approxi-
mately 12,000 vears B.P. (Figure 69-1), The presence of foraminifera
(Weiss, 1974), pollen assemblages, and radiocarbon dating (Owens and
others,I19?4) indicates saline conditions began between 10,000 and 12,000
years B.P., followed by drowning of the ancestral river valleys and the
rapid accretion of fine-grain estuarine sediments. It seems likely
that similar conditions began in the Delaware Estuary about the same
time,

The earliest evidence for the Heolocene transgression is from the
sample 55 (PC-10E) on the eastern flank of the Baymouth Channel. A
carbonaceous mud, in what is interpreted to be a washover barrier sequence

at a depth of 26 meters, gave a radiocarbon date of 9570 + 145 years B.P.
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-Figure 69b. A series of six
paleogeographic reconstructions

of Delaware Bay during the Holocene
epoch -- 12,000 years B.P. to the
present.
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A dark estuarine clayey-silt interbedded with fine to very fine sand
in a core from mid-channel 86 km above the mouth of the bay is dated
at about 10,000 years B.P. (Owens aﬁd others, 1974)., The clayey-silt
extends to a depth of 35 meters and overlies a gravelly sand of
possible fluvial origin. This core may correlate with sample 151
(PC-56E) of similar lithology in the lower bay west of Brown Shoal

at a water depth of 32 meters. '

With the continued rise of sea level and the rapid deposition of
fine-grain estuarine sediments, the incised ancestral river valleys
began to fill with sediments (Figures 69-2 and 69-3) derived from the
Coastal Plain formations, metamorphic rock fragments from the Peidmont,
:and glacial outwash deposits (Neiheisel, 1973; Owens and others, 1974).
Tidal currents and limited wave action eroded the tidal marshes which
had developed along the margins of the estuary, either exposing the
underlying pre-transgression sediments or forming a subcrop of eroded
- marsh in the nearshore areas. In most cases, these subcrops were
subsequently buried by interlaminated fine sands and muds deposited
from suspension; they are analogous to the subtidal flats near the
margins of the bay today.

As the traﬁsgression progressed, the tidal chammels at the mouth
of the bay carried increasingly larger volumes of water in and out of
the bay. 1In order to increase the hydraulic efficiency of moving the
ever—lérger volumes of water onto and off the shallow subtidal flats,
flood tidal channels began to develop in those parts of the‘bay.
Initially, erosion of the new channels was probably in an upbay direction
as the influence of the tide on egstuarine circulation in the bay increased
and the influence of the river decreased (Figure 69-4). The development
of flood channels into the subtidal flats led to higher current velocities
and an increased competence of the currents to rework, erode, and
transpdrt sediments. Mud eroded from the subtidal flats was either
transported into the tidal marshes, transported out of the bay, or
redeposited on the bay bottom. Coarser sands remained in the tidal
channels as lag deposits or reworked suberops of fluvial or Pleistocene

sediments. Fine sand eroded from the tidal channels was transported
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ottt of the cbannel and deposited aleng the subtidal banks of the
channel as the competence of flood tidal currents decreased away
from the channel margin. These fine sands, deposited by levee-like
overbank proéesses, form the lineaf sand ridges of the bay and must
have closely‘followed the development of the flood tidal channels,
Linear shoal formation probably began in the central part of the
bay, then prbceeded in the upbay direction and toward the margins
of the bay ag sea level rose (Figure 69-5).

In the course of these developments, the pre-Helocene terrain
and Holocene fluvial sediments were first buried by fine-grain
estuarine or marsh sediments. These fine-grain sediments were
subsequently eroded and reworked by tidal currents which became
increasingly:important as sea level rose. Prior to this, fluvial
currents weré the only significant source for reworking the fluvial
and estuariné gediments deposited behind, and protected by, the Cape
May Peninsulg. Conditiocns within this protected environment began
to change as‘the transgression progressed over the low gradient land
surface and fluvial influence decreased. As sea level continued to
rise, shoreline erosion led to an increase in the fetch over the bay;
it increased the potential for and effectiveness of shoreline erosion
by waves, an& increased the necessity for further tidal channel
development.j

‘As the tidal influence on estuarine circulation increased behind
the Capes, s¢ did the net landward transport capacity of flooding
bottom curreﬁts. Sediments from the Continental Shelf, the southward-
moving litto%al transport system along the New Jersey coast, and
erosion products from the Cape May Peninsula were transported into
the eastern ;ide of the lower bay. These marine-derived sediments
overlie the ;andy muds and reworked fine estuarine sediments in the
lower bay. A similar, though more restricted situation exists along
the western %ide of the bay. During the past 2000 years (Kraft, 1971a),
littoral drift sediments moving northward along the Delaware shoreline
have been deﬁosited at the mouth of the bay to form the Capé Henlopen

spit complex‘(Figures 69-5 and 69-6).
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SUMMARY AND CONCLUSIONS

The morphological features, sediment distribution, and estuarine
circulation patterns of Delaware Bay today are the most recent stage
in an evolving pattern which began as sea level started to rise at the
end of the last Wisconsin ice advance, At that time, the locus of fine-
grain estuarine deposition began to migrate landward within the incised
Delaware River valley on the Continental Shelf as sea level rose. Most
0oi the fine-grain sediment accumulated between the upstream limit of
ocean salt and the null point, where predominately landward- and
predominately seaward -flowing bottom waters converge. Most of the time
since this transgressive estuarine depocenter passed between the ancestral
Capes May and Henlopen (approximately 10,000 to 12,000 years ago),
Delaware Bay has been the site of active deposition of sediments derived
from the Delaware River and the Coastal Plain. The resulting sediment
mass, or estuarine delta, was characterized by muds and interlaminated
muds and fine sands. Coarser sands were probably deposited within the
bay during pericds of flooding. These sediments, representing the
constructive phase of estuarine delta deposition, began to fill the
protected river valley and topegraphic basin behind the Cape May
Peninsula.

Wave erosion of the tidal marsh complex at the margins of the estuary
produced a shallow subtidal subcrop of marsh mud along the shoreline.
Offshore and bélow the effective wave basin, fine sediments were
deposited over the eroded marsh substrate, forming extensive subtidal
flats throughout mest of the bay.

As relative sea level continued to rise, estuarine circulation and
sediment distribution patterns began to change in the following ways:

(1) Tidal influence in the bay increased until tidal currents
replaced river discharge as the dominant factor controlling the estuarine
circulation pattern.

(2) The landward transport of bottom sediments by flood tidal

currents became more important as tidal iafluence increased.
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{3) As the surface area of the bay increased, the volume of
tidal water passing between the Capes also increased.

(4) The null point and associated locus of fine-grain estuarine
deposition continued to migrate up the estuary as a result of rising
sea level, and perhaps, of decreased river flows._

With the migration of the active estuarine depocenter out of Delaware
Bay into the tidal river, the direction of the dominant energy flux
changed from seaward to landward. The sedimentary processes in the bay
began to chahge from constructive to destructive, characterized by
extensive sehiment reworking and the development of flood tidal channels,
As the tidal influence increased at the bay mouth, flood tidal currents
began to erode channels headward into the muddy substrate of the lower
bay. Mud which eroded during channel development was removed in
suspension and either deposited elsewhere within the bay, the tidal
marsh, or the tidal river, or transported out to sea. The medium—to-
coarse sands' remained in the channel bottom as a lag deposit. Fine
sand was transported out of the tidal channel by secondary currents
and deposited as subtidal levees beside and parallel to the channel.
These levees, or linear sahd shoals, are similar to natural fluvial
and submarine levees, except that they are formed by flood tidal
currents,

These dynamic tidal processes have produced a surface sediment
textural distribution which reflects the reworked estuarine delta,
suberops of the tidal marsh, and fine-grain deposition in quiet
protected waters. The coarse-grain sediments represent subcrops or
lag deposits of pre-transgression sediments and marine sediments
transported into the bay by flood tidal currents. The textural
facies interpreted from the results of a cluster analysis have been
identified in plston cores and provide evidence, together with changes
in bathymetric maps, for the complex rélationships between bottom
morphology and subsurface sediﬁents.

The long-term trend, or direction of reworking, in the bay is

indicated by the pattern of progressive sorting in all the sediment
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texture maps. These reflect a decreasing grain-size trend in the
upbay direction -- that is, from the high energy area to the low
energy level. However, this is not the direction of net sediment
transport for all.the sediment grades present because, in an estuarine
system, the net sediment transport direction of different grain sizes
depends upon:

(1) the elapsed time that each grain size is moving during the
tidal cycle, beginning when the critical erosion velocity is exceeded
tuv the moment when movement ceases;

(2) the effects of the Coriolis force on tidal currents; and

(3) the individual grain size and local dynamic conditions,
including current velocity, the extent of vertical mixing, and the
degree of net séaward transport at the surface and net landward
transport at the bottom.

In Delaware Bay, heavy mineral studies (Neiheisel, 1973), tidal
current data, sand wave orientation, and geomorphic changes all indicate
a well-developed landward transport of the medium-to-coarse sediments
in the tidal chanmnels and on the eastern side of the bay. However,
heavy mineral studies, geomorphic changes, and seismic reflection
profiles indicate a net seaward transport of sand on the western gide
of the lower bay, some of which is lost to the Continental Shelf margin
through the Baymouth Channel. Similarly, Oostdam (1971) calculated that
the net seaward flux of suspended matter is from the mouth of the bay
to the Continental Shelf. Because of these complex conditions, it is
very difficult to determine quantitatively whether the direction of
net sediment transport is from Delaware Bay to the Continental Shelf
or from the Shelf into the bay.

The observed changes in morphology and bathymetry indicate that
Delaware Bay is not in equilibrium with present sea level. This is
due to several factors:

{1) the volume and rate of sediments contributed by eroding
shorelines, the tidal river, tributaries to the bay, and the Continental

Shelf to the bay are low;
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{2) the continued rise of local relative sea level and the
associated increase of tidal effects on estuarine circulation patterns
and tidal current velocities; and

(3) the tidal jet effects at the mouth of the bay caused by the
topographic‘restrictions of Cape May and Cape Henlopen.

These combined factors result in a net sediment influx to the bay
which is low compared to the avallable energy from waves and tidal
currents., Wave-eroded sediments from the shorelines may be transported
by tidal cufrents into the tidal marshes, into the bay, or out to sea.
The dissipation of tidal energy causes extensive erosion and reworking
of bottom sediments. As long as sediment input to the bay is low,
"self~digestion” of the bay margins and the bay bottom will persist,
and preventjthe establishment of long-term equilibrium with sea level
and subsequént development of a subaerial or prograding estuarine delta.

This pattern could be reversed if: (1) relative sea level were
to fall and/or river discharge to increase, causing a reduction in
tidal influence and the seaward migration of the estuarine depocenter
into the bay from the tidal river; or if (2) the Cape May Peninsula
were breaChéd if relative sea level continued to rise.

In conclusion, the model proposed in this study for the transgressive
estuarine délta is simple in concept. However, the details of the model
are complexL involving the adjustments and interactions of f{luvial,
estuarine, énd marine environments to changing conditions of dynamic
equilibrium; they warrant further investigation. Some particularly
interestingfareas of study include the following:

(1) Qpantitative changes in the local and net long-term erosion
and deposit&on when the new National Ocean Service bathymetric survey
of the bay is completed.

{2} Tke mechanism(s) responsible for sediment transport out of
the tidal channels. ]

(3) A complete description of the distribution and character of
bedforms in the bay.

(4) The nature, distribution, and age of pre-Holocene subcrops

at the bottom and margins of the tidal channels,
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(5) Seismic reflection mapping of the Pleilstocene sediments and
structures in the bay, particularly the distribution of the buried
channels. | '

{6) Refiriement of the existing sediment budgets for the estuary
and bay. |
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PHYSICAL AND STATISTICAL PARAMETERS
FOR SURFACE SAMPLES
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APPENDIX I1
CORE DESCRIPTIONS

Legend for symbols used for Delaware Bay core descriptions

- Mud
Fine Sand
Medium Sand
Coarse Sand
¢t s 0 Gravel
LA J @ »
| 4 | ' Peat or Plant Pragments
vV ¥ o .
B & Burrow
AnTAn Pelecypod Shells
Q\W\‘ ’5\ ‘P’}% Gastropod Shell
© Phi. Median Diameter of the Sand and

Gravel Size Praction
4 Weight Percent Mud
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SAND MEDIAN

DIA (PHI) ©

-1 01234
o i ke
.’.:.:.'. .. : . o1
d ..' ..'. .:":.'.-. - CLI-
el A Cl
LM c1
A Co.
e iAal
:l"" .. ® . Cl_
2 W A o1
R ..':.'.'.J Cl
l-b.-:'-' - ...I - Cl
s 3 ﬂ.
ATes ¢o
3 M- Co
oA c1
IR T co
eliiiidl A co
ARG co
h Mg
A CO
R A \ co
K S :
‘ : oy ——— 0
A M 0% 100%

PERCENT MUD &

SAMPLE 17 (PC-l1)

WATER DEPTH 17.3 M.
LAT, 38-50,00 N.
LONG. 75-04.70 W,

~Medium to coarse iron-
stained quartz sand
throughout the core
;Poorly sorted with
granules, pebbles and
abraded shell fragments
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A — 3 Ak k- P

DIA (PHI) o

-1 01234
oM —_— o1
LI ca
SR o1
1 ML €2
LI LUSIle
cii L lle
oo p c1
el )
2 M Tiles T B c1
e * ci
. : O.I.O' : : -...o
R e I co
SRR co
bt ke i 205 T T
o 100%
LM PERCENT MUD A

SAMPLE 30 (PC-3)

WATER DEPTH 42.8 M.
LAT. 38-51.10 N,
LONG. 75-04.70 W.

0-0.8 m, Upward fining

sequences of v. crse. to
med. sand with muscovite
flakes (2-3 mm.) and two'
thin mud laminae.
granules over 1 cm. layer
of peat at 0.8 meters.

Basal

0.8-1.6 m., Uniform struc-
tureless med, sand with
scattered organic fragments.

1.6=3.5 m. Uniform med.
sand with #.'high % of
opaque minerals and large
mica flakes., 3 thick
mud layer with 2 cm. dia.

granule at 1,8 m,

cm.

Upward

fining sequence at 2.9-2.6 m;

At 3.3 m. two 5 cm. layers
of organic fragments
separated by 10 cm. med.
sand,
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SAMPLE 31 (PC-6)

sand, structureless except
for dne burrow.

SAND MEDIAN WATER DEPTH 12.2 M,
DIA (PHI) o LAT. 38-52,30 N.
101234 LONG. 75-03.70 W.
ou ::ﬁ:::::nz' E— F4
::;t}?é{;;ﬁ rs -Uniform grey green fine

B EE F7  _park grey sequence of
. interlaminated sand and
2125:;—-—- ‘ F11 mud overlying a muddy
T T Tl F11 sand.

PERCENT MUD A
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SAMPLE 32 (PC-43)
WATER DEPTH 6.1 M.
LAT. 38-53,60 N,
LONG. 75-01.50 W,

-Uniform grey greey fine sand
mottled with streaks of grey
green mud. ‘

-One burrow filled with-clean
white fine sand.

-A thin laminae of mud
overlying clean structureless
greenish grey fine sand.
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SAND MEDIAN
DIA {PHI) ©

101234
O W L F6
T
BN c17
i D
1 MRS =S Fi8
ottt F36
ikt Fé1
LT e
2 M hie istg s c6 -
e riee c2
IREREEN: c9
g Ml J C1
ESEEETEEE I S c1
eIl
RN R ]
LM e -:’. A\ 1
PSRN
0:776. 00 | o1
IR Y |
KRB
O L .
5 M~ o6 100%

PERCENT MUD A

SAMPLE 53 (PC-4)
WATER DEPTH 11,0 M,
LAT, 38-50,85 N,
LONG, *© 75-07.10 W,

. =Sequence of interlaminated

fine to medium grey green
sand and grey green mud,.
Percentage of sand
decreases with depth.

-At 1.6 meters, a 10 cm.
layer of muddy coarse sand
overlying a 4 cm. layer of
mad.and very coarse sand
and pebble mixture in a
muddy matrix. '

2.4~4.8 m. White uniform
- structureless coarse sand
~Very low in opague minerals
but high in glauconite,
shell fragment at 4.9 m.
-Basal 80 cm. of core
consists of two upward-

fining sequences of gravel

 -Granules 3-4 cm. in dia.

grade upward to very coarse
and coarse sand. Fines

are notably absent in

both sequences.
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SAND MEDIAN
DIA (PHI) ©

-1 01234
P 1.1 1

OM

ll|]

« M
l'l

1 M-:.:..: .'.‘::'." .
2 Me{Z i nias

3 1 | E

PERCENT MUD 4

SAMPLE 55 (PC-10)
WATER DEPTH 20.0 M.
LAT. 38-51.15 N.
LONG., 75-05.60 W.

" O=1.6 m. Upward coarsening

sequence of alternating
muddy fine . and muddy
medium sand with layers of
shell fragments.

1.6-3.8 m, Upward fining
sequence of alternating
fine sands and muds with
layérs of shell fragments.

3.8-4.2 m. Radliocarbon

age date of dark brown
carbonaceous mud is

9580 + 145 years B.P.
overlying a dark grey
muddy medium to coarse sand

L.2-4.8 Clean structureles
grey green medium sand.

1
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SAND MEDIAN

DIA (PHI) o

-1 01234

L1 1

c8

Cc11
c2

€9

c9
Cll

C60
F98
F95

r98
17| F98

| F97
F98

qF99

of 100%
PERCENT MUD A

SAMPLE 57 (PC-2)

WATER DEPTH 33.5 M,
LAT. 38,52.10 N.
LONG.  75-05.70 W.

0-1.2 m. Fine grey green
sand with interlaminated
mud and shell layers

1,2-4.6 m. A distinct
break separates a uniform
dark grey green mad from
the overlying sequence,
Mud is structureless but
has laminae ofivefy fine
sand and two coquina
layers at 2.13 m. and
2.52 m, o
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SAMPLE 73 (PC-11)
‘ SAND MEDIANH WATER DEPTH 28.0 M,
DIA (PHI) o LAT. 38-52,65 N,
101234 LONG,  75-05.70 W.
[ I
SNTIIINIINN F20
:::.:; ¢c1o O-1.4 m. Clean and muddy
PN ey A fine and medium sands
..‘ c11 with scattered shell
32 e ) Cl0 fragments, and a very
_:::_": _: Fi,o distinct bresk at 1.4 m.
L g ?:_“_:—i 1.4-5.6 m. Fine grain
2 M‘gg—-}t—'?;::j F58 mud with laminae of very
:7_7—:‘-_:3;'_'_—? =] fine sand throughout to
___-7_-'-}_-?_'-':_3_ F61 4.6 meters. The frequency
gy of sand laminae decreases
3 Moo S F9%  with increasing depth in
XNy the core. Occasional
Z—i:_::__: F96 sand-filled burrows.
i M--"'-'_:.'“%:'-f'__: F97
EE |
=== o] F99
=T
Epi
R e F97
‘ L
6 1 - o 100% .
PERCENT MUD A
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OM

SAND MEDIAN

DIA (PHI) ©
-1 01234

|

YR EREEER D
1 14 Dt SR .
-] ]
MOEK s
I -
TR Y
. sqe .

O

F30
F13
Fi8
€10
C65
| F21

100%

PERCENT MUD A

Cu2 .

SAMPLE 74 (PC=9)

WATER DEPTH 10,3 M.
LAT, 38-53.45 N,
LONG.  75-04.80 W.

0-0.76 m. "Soupy" fine to
very fine grey green sand
over a compact grey green
fine-medium sand with
coarse sand laminae, which
at the base contains an
oxidized orange mud chip
from the underlying
pre-=Holocene sediment
sequence,

0.76-1,6 m. Light blue grey|

-8ilt grades down to an

orange silt then back to
light blue grey. At 1.39
neters, a thin bedded
brownish orange layer
overlies a 3 cm. upward
fining sequence of coarse
to fine olive sand which
overlies 7 em., of light
blue grey mud with orange
laminae.
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SAND MEDIAN

DIA (PHI) ©
-1 01234
L1 1

oM

b M -

l 14---.- :
o M= o

3 M

...............

 aes v ma s mws s

o A el m—

F26
F16
F72

F67

F13

Fl3

F95

Cl

Cl5

ClL
FL5

Fé6

| I DL L
o 100%
PERCENT MUD A

SAMPLE 78 (PC-8)
WATER DEPTH 14.0 M.

LAT. 38-56. 50 N.
LONG. 75-01,80 W,
‘0~2.8 m. Fine to very fine

sand interlaminated with
dark grey green mud. The
sequence is mud-~dominated
Very thin mud laminae
appeared on wetting at
1.0 and 2.4 meters.

2.8-3.0 Upward coarsening
sequence of grey green -
medium to coarse sand.

3.0-3.8 m. Medium to fine
muddy sand overlies a clean
medium to fine sand with a
very coarse muddy sand
with shell fragments at the
base. o :

3,8-4.5 m. Muddy very fine
sand with occasional thin
laminae of light grey green
fine sand. ' '
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oM

1 M

Ll
1

S

SRR

2 M=

SAMPLE 81 (PC-48)
WATER DEPTH 6.7 M.
LAT. 38-56.80 N,
LONG.  75-00,00 W,

-A clean oxidized layer of
medium sand containing a 3 om.
rounded c¢oal fragment overlies
a 2 ¢cm, layer of dark grey mud
and a sequence of alternating
muddy sands and clean fine sand
The percentage of mud increases
with inecreasing depth in the
core.

2 T"l -

SAMPLE 83 (PC~47)
WATER DEPTH 5.2 M.
- LAT, 38-57.90 N,
LONG,  75~00.80 W,

-A surficial layer of broken
Ensis shell fragments overlies
a sequence of alternating

. clean white fine sand, mud,
and muddy sand.
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oM

6 M-

SAMPLE 109 (PC-44)
WATER DEPTH 11.5 M.
LAT. 38-55,20 N.
LONG,  75-04.40 W,

-A uniform structureless

grey green medium sand with
scattered small shell fragments
and mica flakes.
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SAND MEDIAN
DIA (PHI) o

101234
1111
F28
Il
1 Mo l F15
| P19
214_33 : Fa
F5
|3 mqFE s F13
ELEEEE
WREEeEs 2
T = F36
! L
of 100%

PERCENT MUD 4

SAMPLE 119 (PC—lZ)
WATER DEPTH 10.6 M.

IAT, 38-54,00 N.
LONG., 75~09.90 V.
0-3.1 m, Fine to very

fine muddy sand without
structures or variation.

3.1-4.6 m. Alternating
layers of fine to very
fine sand and mud. The
frequency and thickness
¢f the mud layers

increases with increasing
depth in the core.
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SAND MEDIAN

DIA (PHI) o

_»1fo 1234

J_1. 1 1

{1 M

2 M-

f M=

T e et p— —

3 M~

e g A S

S deal e m—

— e e et —
[— A o o,

-----------

e — —— — —

e e T —

e e e o —— -

| — g— o —
e e ———

forr = a p a— —

ot e m—

s b b M — —

e w— —
e e e e —

e

ks b ey —

v A — —
-----------

—— i —— —

-—— — g —

— - ——

R T ]

—— e ———

-_— o e S— - s
- e - v— -

v e e — -

- o o —— e
b - — — — — —

-
— o e — ——

N CY4

G99

NF99

NF99

F99

AF99

6 M

Ar99
1 11

o 1004
PERCENT MUD A

SAMPLE 130 (vC-17)
WATER DEPTH 25.8 M,
LAT. 38-55,95 N.
LONG.,  75-09.45 W.

—An extremely fine grain
sediment sequence through-
out its length. Thin
laminae of very fine sand
occur in the middle and
lower sections of the core.
The results of a pollen
analysis at O0.54 m, are
listed in Table 8.
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OM

SAND MEDIAN

DIA (PHI) o
-1 01234

1

1 M.-;;t::

2 M-

3 Mo

b M e

F79
FOL

75

F18

5M=

of

|
1004 .

PERCENT MUD A

SAMPLE 131 (VC-18)
WATER DEPTH 12.8 M,
LAT, = 38-55.30 N.
LONG.  75-09.55 W,

0-1.8 m. Three upward
coarsening sediment sequenceg
of gfey mediuvm sard, shell
fragments and pebbles with
a distinet textural break

at 1.8 meters.

1,8-4.3 m, Mud dominated
sequence of interlaminated
brownish grey and brownish
red mid and fine sand.
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_ SAMPLE 132 (VC=19)
SAND MEDIAN WATER DEPTH 8.2 M,
" DIA (PHI) o LAT. 38-55.90 N.
| -10123% LONG.,  75-06.85 W,
0 M k1Lt co
- o

gg -%Uniform light‘ brown-sand

c1 fine to mediww sand that
1 M.y : o is rich in opaque

.............

------------
-----

minerals.
B c1
2 Mosisoiianih '
- IR co
.::: '.: ':_ ‘.- .'. '.. .u Cl
B co
3 M
AR, c1
SIS c2

L M- | o 1004
PERCENT MUD A
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SAND MEDIAN

SAMPLE 133 (PC-21)
WATER DEPTH 8.8 M.

DIA (PHI) o LAT. 38-58,70 N.
; -1 01234 IONG.  75-01,50 Ww.
0 Mer— T W
. ~A sequence of alternating
layers of fine sand and
muddy sand with occasional
1 Mo - layers of sandy ud.
Possible bioturbation in
the upper 0.7 meters.
2 M- LTSS
Of 1007
PERCENT MUD A
3 M
SAMPLE 135 (PC-51)
WATER DEPTH 7.9 M.
LAT, 38-59,30 N.
LONG.  74-59.90 W.
on PTLTLL LSS '
“":.. —:._.'“'_"'_ —-An alternating sequence of
i clean fine grey green sand,
T LT mud, and muddy sand.
1M
2 M-~
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SAMPLE 136 (PC=20)
WATER DEPTH 7.3 M.

SAND MEDIAN

DIA (PHI) © IAT.  38-59.20 N.
101234 LONG.  75-59.20 W.
0 M= 5] F65 |
e e = -Surficial shell fragments
::--::a;_:_'_'—:—-_f F81 gyerlie a mud dominated
f"::_f_ff: sequence of interlaminated
1 1\,1_'_;_:___';-;';:-_._;'-____.‘_' F72 fine to very fine sand
:-___'_“: ;gl and mud to 1.1 meters
LT F32 Lower section of core is
'_'_’ :"'___ {pog also interlaminated fine
2 Me ‘ | T ' sand and mud but is
0% 100% sand dominated.

PERCENT MUD A
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SAND MEDTAN

'DIA (PHI) o

-1 012 3%

oM

1 M#:

5M

- 1 1 1
EEEE
T F28
SOOI TS F33
E :0'.:-:.':;- Y C7
S TOREpd c22
. _:.'.-'.'.: e
fp c21
gﬂ o.5 C10
l:\r:.:.. :: .. .: ..
.::. . :..:‘. -:. 013
RN
ErARREEE c7
HERTANRISEE
LR ce
PR :.::
TN ERET N
}{{: o c8
P
RS c6
3’2::':r
priesil €10
' | 5 D L

o 100%
PERCENT MUD A

SAMPLE 143 (VC-20)
WATER DEPTH 4.9 M.
IAT.  38-54,20 N,
LONG.,  75-13.45 W,

0-1.0 m. Grey fine muddy
sand with scattered shell
fragments.

1.0-2.0 m. - Grey coarse
sand with scattered shell
fragments and abundant
pebbles increasing with
increasing depth,

2.0-5,0 m. White coarse to
very coarse sand with
abundant pebbles scattered
throughout. White color

is due to presende of white
clay but is variable from
light grey to dark yellow-
orange, '
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SAND MEDIAN
DIA (PHI) o

101234

Ll 11

OM

1 M=

2 M+

s

e e e L — -

L, MPAvA A

e I

.....
---------
- "

oooooooooo

o e e A

— ot R wm — —

— v S S o
......

...........
. k) .

W e - ]

— e — — —

—_— e — —

— et el ——

— e e ot —

— o r— —
gl S —— =

—— T —— ——
—— A e - -

F10
F9

Fll

Fll1

F27

F25

F2L
F74

F79
F82

Fg2

T 71
o 1007

PERCENT MiD &

SAMPLE 149 (PC-13)
WATER DEPTH 12.2 M,
LAT. 38-56,30 N.
IONG.  75-11.30 W,

0-2.6 m. Sequence of

interlaminated muddy fine
sand, clean fine sand, and
mud with sandy shell layers
and evidence of
bioturbation.

2.6-4,9 m, Distinctive
dark grey mud with
occasional laminae of fine
sand and layers of shell
fragments.
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CHM

1 M

2 M+

3 M™

e e — —

| S mm a

T
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i — i w— e —
— iy i —
R L
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fr s wm m—

e i e s Sk ity e o ]
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T . R P

e | — e ——
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ot e —
T e e e

e e L R
s mw ey —— —
..........
— e g —

et |t mmmn i m—
P e

SAMPLE 151 {PC-56)
WATER DEPTH 32.0 M.
LAT. 38-56.80 N,
LONG, 75-10,20 W,

0-0.07 m. Oxidized medium to
coarse sand with muddy sand
layers

0.07-5.93 m. Dark grey mud
with laminae (lmm to & mm thick)
of clean white very fine sand,
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OM

1 MA=S

e —— — ——

fwe e —

— f— — " S— —

i e ey o —
I g S ——

2 M-

SAMPLE 167 (PC-.45)
WATER DEPTH 6.4 M.
LAT. 38-56.90 N,
LONG.  75-12.90 W,

35 em. of clean fine to medium
grey green sand overlying a
distinct sequence of dark grey
mud with interlaminated fine
sand and muddy sand layers less
than 2 cm. thick. Mulinia and

- Nuecula valves at 1.2 meters.

Core closely resembles core 259
from Joe Flogger Shoal.
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SAMPLE 169 (PC-14)
WATER DEPTH, 9.1 M,
LAT, 38-57.80 N,
LONG.  75-12,80 W,

SAND MEDIAN
DIA (PHT) o

-1 01234
Lt 111

F9 ‘
c1 —Very fine grey green sand

overlies a grey green

o1 mediunm sand with very
high concentration of

el opague minerals. Sand is
well sorted and structures

Cl are absent. Sequence
=T F20 overlies finer grained
o 100% muddy sand.

PERCENT MUD A
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0% 1004

PERCENT MUD A

2 M=

SAMPLE 170 (PC-15)
WATER DEPTH 16.7 M.,
LAT, 38-57.80 N,
LONG, 75-11,70 W.

'-Well sorted, structureless

light grey green fine sand
with a basal pebble layer.
Sequence overlies upward
fining sequence of very
poorly sorted pebbly very
coarse sand grading upward
into a clean well sorted
white medium sand.

~Boundry correlatea with
seismic subbottonm
reflector at fix 643.
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SAMPLE 173 (PC-19)

SAND MEDTAN WATER DEPTH 13.1 M,
DIA (PHL) © TAT. 38-57,80 N.
101234 LONG.  75-09.50 V.
\ "I
0 M=oY K - e
f i KX -Uniform, clean fine
RS I 1 Cl  grey green sand with high
_i__ opaque mineral
iR Uiy EEREICLRTRE B ? | ¢t concentration. No
'."5}:':':':".':". structures but scattered
: -I." E & c1 muddy patches.
of 100%
2 M-

PERCENT MUD A
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SAMPLE 174 (PC-16)

SAND MEDIAN WATER DEPTH 14.3 M,
DIA (PHI) o LAT. 38-57.80 N.
101234 LONG.  75-07.50 W.
[ T |
0 Mep~ F3 .
0-1.4 m. Grey green fine
Ch  sand with layers of rddy
= sand and mud. Muddy
1y -RE _Cl streaks and mud filled
& burrows suggest reworking
T c2 and bioturbation.
2 ML 9 co 1.4-3.9 m. Grey green
" medium sand with muddy
1k c2 patches and mud laminae.
Oyster shell fragments at
d ¢z 1.8 and 3.2 meters.
Layers of coarse sand at
c1 2+1» 3.3, and 3.7 meters.
(RN AT c2

b1 o 1008

PERCENT MUD A
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SAMPLE 175 (VC-22)
WATER DEPTH 7.6 M,
LAT, 38-58.80 N,
LONG, 75-06,30 W,

SAND MEDTAN
DIA (PHI) o
~101234
0O M L1 1 1

..........

LERER A : F1L  -Monotonous clean grey
R EOaa 72 green sand with scattered
1 M iF3 muddy streaks and mud

RS laminae.
R F2

EISRKEREELRR

HHERs F5

I

2 Mol 1

R E
SIIVT I F2.
P MR F3
AR “" Fi

Lirrviiey F3
_’_“ F7
Pt § Fi4
E T e e F17
e S F22
5 M=+ T T T
O 100%
. PERCENT MUD A
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SAMPLE 193 (PC=52)
WATER DEPTH 7.0 M.
IAT.  38-59.80 N.
IONG.  75-11.40 W,

O N Tr=Eeney
sl e _ -Clean grey green medium sand
AR overlies a sandy shell layer

and a clean structureless sand
1 M= which grades downward to
fine sand.
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SAND MEDIAN

DIA (PHI) ©
-1 01 2 34
Lt 1

oM

c2
F3

Fi4
Fl1

F12
Cl
C5
c7

C?2
C9

C10

co
C?2
F80

F98
F60

€30
c28

o 1004
PERCENT MUD A

SAMPLE 197 (VC-23)

WATER DEPTH 6.4 M.
TAT. 39-01,80 N,
LONG. 75=04,90 W.

0-1.5 m, Clean grey green
fine sand with occasional
shell fragments,

1.5~3.5 m, Clean grey green
medium sand with shell
fragments and grey green
mud laminae.

3.5=4.7 m. Hom ogeneous
dark grey mud without
structures.

ho7-5.4 m. Layers of
interlaminated medium sand
and sandy mud. '
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" SAND MEDIAN
DIA (PHI) o
~101234
O M=y A s
RSPt F56
L F75
1 M T FL3
At P35
oAy o €33
2 Mmoo Fd9
Serrer
ety F89
; T
3 M- o 100%

PERCENT MUD A

0-1.8 m. Very fine sand and

]
SAMPLE 199 (PC~22)
WATER DEPTH 11l.5 M,
LAT. 39-02.10 N.
LONG.,  75-02.40 W,

muddy sand layers.
Percentage of mud increases
toward the top of the core.
Shell layer at ‘core top.

1.8-2.7 m. Distinctive
break separates dark grey
mud with laminae of fine
sand,
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| SAMPLE 226 (PC-26)
SAND MEDIAN WATER DEPTH 11.5 M,

DIA (PII) o © LAT.  39-01,75 N.
10112 3% LONG. 75-15.40 W.
0 My 3 s
gif?ﬁ?i::fg t €6  0-0.8 m. Mediim to coarse
fff‘_'.'_:a,.'.i".'..a\?. C2  oxidized orange sand.
S diets C1
BTEIPRE
1 Mf e F8,4 0.8-1.0 m. Oyster shells
RO gg in a stiff dark grey mud
matrix. Radiocarbon age
C5  date of the shell material
2 M F1TT1- ¢ was greater than 40,000

o/ 100% years B.P.
PERCENT MUD 4

1.0-2.0 m. Uniform,
structureless oxidized
medium sand with occasional
shell fragments and mud
flakes in the sand matrix.
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SAMPLE 231 (PC-55)
WATER DEPTH 10.9 M.
LAT, 39-03.30 N,
LONG,  75-09.70 W.

O MY =rrTooes

LR =Clean to muddy fine grey

sand overlying a uniform

. dark grey sandy mud with

T T scattered shell fragments

V= laminae of fine sand and
one sand filled burrow.
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.
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I)ethy
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1 M~
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B et 3 — b e -
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T MR 4 w4 ey -,y

¥ et ¥ s
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SAMPLE 243 (PC-25)
WATER DEPTH 10.0 M.
LAT. 39-03.00 N,
LONG,  75-13.00 W,

§%6 -Upward fining structure-

less grey green fine sand
F1 with basal shell fragment
F3 layer in sandy matrix.
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SAND MEDIAN

P r—

0l
1 M

2 M=
| Fé62
Q5

3 M= Fo0

96

£89
c79

C7
C3

-j€o
co
2

ob 10075
6 M= PERCENT MUD A

SAMPLE 247 (VC=24)
WATER DEPTH 6.4 M.
LAT. 39~05,30 N,
LONG.,  74=05.30 V.

0-1.0 m. Muddy fine sand
with shell fragments (Ensis,
Mullinia, Nucula, and
Crassostrea).

1,0-4.0 m. Sandy grey
green mud grading downward
into a uniform fine grain
mud.

4.,0-5.5 m., Bleached zone
of * mixed coarse sand and
mud overlies 20 ¢m. upward
fining sequences of white
granules and medium sand.
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SAND MEDIAN

DIA (PHI) ©
101234
0 M == -1 r1o0
Fratent F10
T, F20
e Doy e
B F20
SaARS Fe>
el P F93
R c52
A F70
T c80
s P18
=22l F50
— B N N O F20
7 100%
3IM&T PERCENT MUD A

SAMPLE 259 {(PC-30)
WATER DEPTH 9.4 M.
1AT. 39-05.20 N.
LONG, 75-13.70 W.

0-0.3 m., Grey green
very fine muddy sand.

0.3~2.5 m. Distinct
boundry contac¢t separateq
soft, dark grey mud
from overlying sands,
Mud contains layers of
broken shell fragments
and shells with both v
valves attaches. Plant
fragments are scattered
throughout.
~Radiocarbon analyses of
in-place Mulinia and
Nucula valwves at 46-54
c¢cm. and 70-74 cm. gave
age dates of 2,685 + 90
years B.P. and 2,855

+ 90 years B.P.
respectively.
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SAND MEDIAN

SAMPLE 260 (PC~29)
WATER DEPTH 5.5 M,

PERCENT MUD A

DIA (PHL) o LAT.  39-05.35 N.
1 111 7
F30 o
F78 -~Alternating layers of
g?g clean white- fine to very
g?g fine sand with grey green
Ff} muddy sands and grey green
F36 ™Mud.
F57
Fé62
F76
_ _'I_I_T'T_F30
ot 1004
PERCENT MUD A
3 M=
SAMPLE, 261 {PC-31)
SAND MEDIAN WATER DEPTH 7.9 M.
DIA (PHI) o LAT. 39.05.40 N,
~101234 LONG.,  75-12.80 W.
O M s B 2T
:' F9 Uniform structureless
o FFIR R F5. grey green fine sand.
RN, Fi
I PERNRERE F3
R I
o 100%
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SAMPLE 262 (PC-39)

SAND MEDIAN WATER DEPTH 8.5 M.
DIA (PHI) o LAT. 39-06.30 N.
101234 LONG.  75-10.00 W.
| I .
F9

F5 ~Uniform, structureless
well sorted grey green

F3 fine sand.

F5
T 11

i
of 100%
PERCENT MUD A

2 M-

SAMPLE 278 {PC-54)
WATER DEPTH 7.6 M.
LAT. 39-07.30 N.
LONG., 75-13.60 W.

N "—"" = -One meter of light grey fine
___________ sand with muddy streaks and
-*' mud laminae overlying a basal
1 M'...:_." dark grey mud with sandy
--- == streaks.

2 M~
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SAMPLE 279 (PC-53)
WATER DEPTH 12.2 M,
LAT. 39-07.20 N.
LONG, 75—12.8Q w.
oM SRR ~Clean oxidized m.edium sand
_ overlies a massive dark grey
B mud with two very thin laminae
) N of very fine sand and sand-
M-

filled burrows. This sequence
overlies a thin muddy medium %o
coarse light grey sand and a
clean'grey green medium sand.
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SANR MEDTAN
DIA (PHI) e

L1 012348
| UL ,
T e~ o] g12
ONTERT 80
SO AGA FOh
L e F98
—=T == F99
2 nEF T E 99
st
EFLFE?ECE?E F99
_ A T
3 M o 1004

PERCENT MUD A

" =A coquina of small shell

SAMPLE 291 (PC-27)
WATER DEPTH 7.3 M.
LAT. 39-07.00 N.
LONG. 75-16.90 W,

fragments in a fine to
medium sand matrix
overlies a massive dark
grey mud which contains
shell layers at 0.5 m.
and oyster shell
fragments and gastropod
shells at 2.0 and 2.3
meters. '
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SAMPLE 317 (PC-32)

SAND MEDIAN WATER DEPTH 6.4 M.
DIA (PHT) ¢ LAT.  39-10.30 N.
-1 01234 | LONG, 75-18,00 W.
OM SR F18
F8 -Upper % meter shows upward
E%Z fining sequence in uniform
FL3 grey green fine sand and
1 M"??:. g%g overlies beautifully
N3 _ FL4  interlaminated sequence of
11 g%g fine sand and muddy fine

o% 100% sand with mud laminae.
2 M= PERCENT MUD A '
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SAMPLE 322 (PC-38)

SAND MEDIAN WATER DEPTH 7.6 M,
DA (PHI) o LAT. 39-11.30 N,
-1 01234 LONG,  75-12.80 W.
O M S ¢5
;’t_'_d Cgé '0-0.5 m. Layers of grey
=2 S =3 g74 green fine sand and coarse
EEECEE C2 sand with pebbles.
gty F52 .
1 Moo s C37
TR 0.5-1.1 m. Light grey mud
13 layers bedded with thin
upward fining sand seq. 'nceq
& C1
\ Cl1 1.1-2.3 m., Upward fining
T T3 sequences of very coarse
of 100% sands grading to medium

| PERCENT MUD A  gand, Pebbles scattered
I M- throughout. '
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SAMPLE 328 (PC=36)

~ SAND MEDIAN WATER DEPTH 6.1 M.
DIA (PHE) o LAT.  39-11,10 N,
101234 LONG. 75.18.50 W,
1 1111 . .
€22

C18 0-0.7 m. Shell fragments
Cl in a grey green muddy sand

Sl 0.7-1.5m. Upward fining

sequence of light grey
green coarse to medium sand,

TS

Cl

1.5-2,6 m. Medium to very

coarse pebbly sand. No
T structures or bedding

| 072 100%  sequences are visible.

3 M"" PERCENT MUD A
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SAND MEDIAN
DIA (PHI) ©
~1 01234
; Lt 51 Fa7

% F78
Co

F95
C36

F39
F92
Co

i
RIS
Iyt

It

e —y

o F83
2 M T F53

PERCENT MUD A

IM-

SAMPLE 362 (PC-35)
WATER DEPTH 5.8 M.
LAT. 39-15,70 N.
IONG, 75-21.50 W,

-Sequence of interlaminated

fine to coarse clean sands,
muds, and muddy sands.
-Top sand layer contains
slag and coal fragments.
-Most of the mud laminae
show very thin laminae

on wetting.
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I il —

SAMPLE 372 {(PC-=33)

SAND MEDIAN WATER DEPTH 8.5 M,

DIA (\PHL) © LAT. 39-16.80 N.

-1 012314 LONG. 75-20,80 W.
O Moy 2 r20
. F77

F15 0-1.1 m. Fine to very fine
|F2h  grey green sand with a few

F20 mad laminae.
F93

F97 1.1-2.8 m. Dark grey mud

F95

Fol, with one large quartsz

F92 pebble at 1.3 m, large
fragments of oyster shell

F53 at 2.2 m., layers of medium

cg sand at 2.5 and 2.6 meters.

— C86 ' Very thin laminae of fine

3 M- o 1004 white sand occur

PERCENT MUD A throughout. the sequence.

1 M=
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SAMPLE 397 (PC-34)
‘WATER DEPTH 9.4 M,
LAT. 39-21.55 N.
LONG. 75-26.75 W,

O M=

-Alternating layers of dark grey
mud and c¢clean coarse white sand
overlie a dark grey mud with
many thin laminae of fine to
very fine white sand.

1 u-AEE

2 M™
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